

 62

Journal homepage: https://ijas.uodiyala.edu.iq/index.php/IJAS/index ISSN: 3006- 5828

Iraqi Journal for Applied Science (IJAS)
Vol. 1, No. 3, December, 2024, pp. 62-70
ISSN: 3006-5828, DOI: 10.69923/yc6c1d53

Developing a Methodology for IOT Load Distribution within

Edge Computing

Abdullah Farhan Mahdi1, Aymen Mudheher Badr2, Israa Adnan Mishkal3
1Department of Computer Engineering, Faculty of Engineering, University of Diyala, Diyala, Iraq.

2Department of Political Science, College of Law and Political Science, University of Diyala, Diyala, Iraq.
3Department of Computer, Faculty of Science, University of Diyala, Diyala, Iraq.

 Article Information Abstract

Article history:

Received: 09, 07, 2024

Revised: 25, 11, 2024

Accepted: 20, 09, 2024

Published: 30,12, 2024

Optimizing task distribution and resource allocation becomes crucial

with the exponential growth of IoT devices and the proliferation of edge

computing. On the other hand, building such a flexible model about

resources inside a heterogeneous climate is difficult. Also, the increasing

demand for IoT services necessitated working to reduce the time delay

by accomplishing successful load balancing. The objective of this study

is to enhance load balancing by ensuring equitable allocation of

resources among workloads, thereby enhancing Quality of Service

(QOS) in cloud computing and minimizing processing time (PT), hence

decreasing response time (RT). Our methodology presents a

decentralized system with multiple agents that utilize the nodes in the

edge and the cloud to distribute the workload caused by incoming tasks

and the cost of performing those tasks. A collaborative model is

followed to allocate the tasks to the resources to increase the utilization

of available resources.

Keywords:

Internet of Things

Edge computing

Load balancing

Standard deviation variance

Execution time

Corresponding Author:

Aymen Mudheher Badr

Department of Political Science, College of Law and Political Science,

University of Diyala

Diyala, Baquba, Iraq

Email: Aymen.m.badr@uodiyala.edu.iq

1. INTRODUCTION

The Internet of Things (IoT) has an unprecedented effect on how data is shared and processed [1]. An

estimated 125 billion devices are projected to be operational on the Internet of Things (IoT) by 2030. These

devices produce a gigantic measure of data sent to the cloud for processing, increasing the load on data

centers in the cloud and networks overall [2]. Notwithstanding the many benefits of computing, numerous

IoT applications can't run on the cloud efficiently [3]. Moreover, IoT devices can be categorized in various

ways based on their functionalities, communication protocols, and application domains, such as wearable

devices, smart home devices, industrial IoT devices, smart appliances, connected health devices, smart cars

and transportation, smart cities infrastructure, agricultural IoT devices, environmental monitoring devices,

and retail and inventory management [4]. On the other hand, running applications on the cloud, which is far

from users, leads to unpredictable latency, as well as security and privacy concerns of data traveling across

public networks to remote cloud centers. However, many edge nodes have resources that we can utilize to

decrease bandwidth and latency through the networks [5].

Edge computing is an architecture that is utilized to decrease traffic over the network and improve QOS

for applications that are sensitive to delay [6]-[8]. The allocation of IoT services on the existing resources

within the cloud-to-edge hierarchy is a critical obstacle in edge computing. This is because the dynamic

nature of IoT services and their dispersed locations across a large geographical area are such that inadequate

distribution of the load will result in a decline in Quality of Service (QOS) [9].

https://ijas.uodiyala.edu.iq/index.php/IJAS/index

 Iraqi Journal for Applied Science (ISSN: 3006-5828)

 Developing a Methodology for IOT Load Distribution within Edge Computing (Aymen Mudheher Badr)

63

Some recent studies have addressed the problem of load balancing in the cloud. In [10], fostering an

algorithm for load adjusting was introduced utilizing the PSO algorithm. The algorithm creates a group of

individuals. Each potential solution for task allocation is represented by a vector of length n, where n denotes

the job number, and each element is a random number ranging from 1 to m, where m is the number of the

virtual machine. For each individual, the absolute execution time is calculated.

The individual exhibiting the shortest execution time is selected, and the tasks are allocated to the

predetermined virtual machines inside the selected vector. An inherent problem of this approach is the

premature convergence in reaching the solution when the search space is limited. This proposal focuses on

identifying the optimal solution within the selected search space, rather than the most optimal solution that

can be achieved inside the cloud center. If a large initial local area is used, it will result in a significant

increase in the time required to find the best candidate, leading to a substantial increase in the waiting time

for tasks until they are scheduled and ultimately an increase in the response time.

The article [11] proposed a load-balancing method using the Ant Colony Optimization (ACO)

algorithm for dynamic cloud load balancing. In this method, virtual machines are evaluated based on the

resources allocated to each of them. Then, tasks are assigned to the highest-rated virtual machine based on

their arrival at the data center. This process does not consider the task’s size, so the uneven distribution of

tasks may cause some nodes to be overloaded and others under load conditions. The proposed method relies

on dynamic load balancing to solve this problem, as after allocating tasks for the first time, the nodes begin

to exchange information among themselves periodically, and each node maintains information about all

network nodes, so if a particular node is under high load conditions, it will search within the stored

information. It has to look up another node in the network with a low load and migrate some tasks to it. The

problem with this method is that if the periodic time for information exchange is small, this will lead to a

large load on the links and in turn will lead to a delay in the process of migrating tasks from one node to

another, as well as increasing migrations leading to a delay in executing the tasks that are migrated and thus

an increase in response time and total execution time.

In [12], a method was utilized for load adjusting between virtual machines inside a cloud center to

diminish RT. The suggested approach architecture is based on three phases: firstly, the processing capacity

of the virtual machines and the workload on each of them are assessed and categorized into four levels:

Underload, Balance, High Balance, and Overload. Next, the evaluated execution time for the task is

calculated for each virtual machine in the Underload condition. The objective is to assign the errand to the

virtual machine that achieves the shortest possible execution time. If there are no virtual machines in the

Underload state, the estimated execution time for the assignment is calculated based on the virtual machines

still in the Balance state. Given the assumption that all virtual machines are in the Overload state, the job is

placed in a queue until one of the virtual machines transitions to a different state. This approach fails to

consider boundary conditions, such as internal and external stockpiling, which could fail in specific tasks,

assuming that the memory is limited and insufficient to complete the assignment.

In article [13], an improved algorithm for the Throttled algorithm was suggested, in which the load is

balanced by updating the Index Table, which contains information about the state of virtual machines, either

0, i.e. available, or 1, i.e. unavailable. Therefore, when a new task arrives at the cloud data center, a search is

performed. Find the first available virtual machine within the index table and assign the task to it. The

improved algorithm is named Throttled Modified Algorithm (TMA) to improve response time. The load in

this algorithm is balanced by updating and maintaining two Index Tables, the first containing the ID of

available virtual machines and the second containing the ID of unavailable virtual machines. When the cloud

data center controller receives a new request, it sends a query to the load balancer for a new assignment. The

load balancer selects the first available virtual machine and sends its ID to the controller, which assigns the

task to the specified virtual machine. If there is no available virtual machine, the load balancer sends the

value (-1) to the controller, which queues the task. This algorithm does not consider the resources of each

VM and the load on it, and this may lead to the allocation of large tasks to virtual machines with limited

resources, which leads to the occurrence of Trashing or increasing in RT.

In [14] A round-robin (RR) method was employed to minimize the reaction time (RT). The proposed

approach relies on gradually distributing the execution period of projects for each cycle. The time allocation

for the initial cycle is equal to the mean anticipated completion durations for the tasks. During the following

cycle, the completed tasks are removed from the list, and the remaining execution times for the unfinished

projects are determined at the halfway point. This cycle is rehashed until all undertakings in the assignment

list have been finished. This study depended on advancing the booking of errands allotted to virtual

machines and the most common way of allocating assignments to virtual machines on the static Cooperative

calculation. Consequently, this algorithm further develops handling time for little estimated errands. Yet, it

doesn't consider the assets distributed to each virtual machine while designating undertakings, so it might

prompt destruction or a critical expansion in handling time for enormous measured undertakings.

 Iraqi Journal for Applied Science (ISSN: 3006-5828)

 Developing a Methodology for IOT Load Distribution within Edge Computing (Aymen Mudheher Badr)

64

A QoS-aware service allocation method was proposed in [15] for fog ecosystems to reduce service

latency while considering capacity limitations. The objective is a multi-dimensional knapsack problem to

simultaneously minimize the cumulative delay in service execution and the excessive load on edge nodes,

measured in processing capacity and energy consumption. This paper introduces a two-step resource

management strategy that optimizes the response time for service delivery by minimizing the number of

edge nodes used. Initially, a home edge and a group of backup edge nodes are selected for each device. They

aim to identify the edge nodes to minimize the latency observed between them and the device. Following

this, services requested by IoT are hosted on the designated edge nodes, ensuring the intended response time.

A review of resource management strategies applicable to cloud, fog, and edge computing was

conducted in reference [16]. Firstly, it focused on the constraints of research on resource management

strategies in that particular field. Therefore, it categorizes the existing research contributions to facilitate the

implementation of an evaluation framework. An important contribution is the comprehensive review and

analysis of research publications focusing on resource management approaches. In conclusion, this review

emphasizes the potential for implementing resource management strategies inside the cloud/fog/edge

paradigm. The current study is in its nascent stage of development, and it is imperative to surmount

obstacles.

The work aims to enhance the quality and effectiveness of cloud computing by creating a systematic

approach for allocating workloads among the processing nodes. Implementing this would facilitate a

consistent and equitable workload in the cloud, enhance processing efficiency, and hence enhance the speed

of response. The examined papers in this study mainly address load balancing and resource management in

cloud computing. The strengths and limitations of these works are presented in Table 1.

Table 1. A comparison of the related works
Paper Approach Advantages Limitations

 [10]

Utilized PSO algorithm to assign

tasks to VMs based on execution

time

Considers execution

time to optimize task

assignment

Can converge to local optima if

search space is small< br > − Does

not consider optimal solution within the

entire cloud center

 [11]

Used Ant Colony Optimization

(ACO) algorithm for dynamic

load balancing

Dynamically balances

load by migrating

tasks between nodes

Periodic task migration can cause

network overhead and delay task

execution

 [12]

Classified VMs into Underload,

Balanced, High Balanced, and

Overload states
 Assigned

tasks to VMs with lowest

execution time

Considers VM

processing capabilities

to optimize task

assignment

Does not consider other factors like

storage, which can lead to thrashing

 [13]

Improved Throttled algorithm by

maintaining two index tables for

available and unavailable VMs

Efficient task

assignment by tracking

available VMs

Does not consider VM resource

utilization, which can lead to

thrashing or increased response time

 [14]

Used Round Robin algorithm

with dynamically adjusted time

slots

Enhanced efficiency in

handling minor

computing workloads

Fails to account for virtual machine

resource allocation, which can impact

the execution of large tasks

 [15]

Modeled service allocation as a

multi-dimensional knapsack

problem to minimize latency and

overloaded edge nodes

Considers both latency

and edge node

capacity constraints

Early-stage research, needs further

development

 [16]

Reviewed resource management

techniques for cloud, fog, and

edge computing

Provides a

classification and

evaluation framework

for resource

management research

Yet at the nascent stage of

development, with obstacles to sur

2. COMPREHENSIVE THEORETICAL BASIS AND THE PROPOSED METHOD

The network will be represented as a diagram G = (V; E) [17]. Where: V = (C ∪ F), The F: group

consists of nodes situated at the periphery of the network, whereas the C: group comprises nodes positioned

at the core of the cloud. E is the edge connecting all nodes, and αi ∈ A : is a group that incorporates the

Internet of Things (IoT) services.

The concept under consideration is founded upon an edge computing hierarchy and is structured in

a three-level design. The first tier denotes the periphery of the network, encompassing a cluster of nodes near

the geographical locations of Internet of Things devices, which are interconnected with them via a Local

Area Network (LAN) [18],[19]. The second level contains nodes that are farther from the user than the first-

level nodes and closer to the user than the nodes of the third level [20].

 Iraqi Journal for Applied Science (ISSN: 3006-5828)

 Developing a Methodology for IOT Load Distribution within Edge Computing (Aymen Mudheher Badr)

65

The third level includes the nodes furthest from the user. These nodes are located within the cloud

center and have high specifications in terms of the hardware resources contained within them. Figure 1

represents the proposed network architecture. Load balancing means efficiently distributing incoming

network traffic, application processes, or computing workloads across multiple servers, resources, or nodes

within a cloud infrastructure. The primary objective is to optimize performance, reliability, and resource

utilization by preventing any single server or resource from becoming overwhelmed, thereby ensuring a

consistent and responsive user experience [21]-[22]. The assets designated to each node are distinguished

and changed powerfully, relying upon the assets booked by the errands doled out to the nodes and the assets

delivered when the node executes a specific task. The ability of every node is registered to rely upon the

resources available to every node, as in Eqs. (1)-(4) [8].

Figure 1. The proposed network three-level architecture

Where τ j is the node’s capability, PCPU is the power of processing that is available to the node, mi

is the internal storage available of the node, mi is the external storage available of the node, PMax is the total

power of processing of the node, miMax is the total internal storage of the node, The variable meMax represents

the overall external storage capacity of the node, whereas ϕ is a parameter used to adjust the resource's level

of impact.

𝜏𝐶𝑃𝑈 =
𝑃𝐶𝑃𝑈

𝑃𝑀𝑎𝑥
 × 100% (1)

τmi =
mi

miMax
 × 100% (2)

τme =
me

meMax
 × 100% (3)

τj = (∅1 × τCPU) + (∅2 × τmi) + (∅3 × τme), ∑ ∅ = 1 (4)

The ability of every node is changing continually, relying upon various factors. The node’s

capability τj decreases when allocating a new task to the node and the decreasing value (1- μ) relies upon the

consumed resources ratio of the node [11], [23] as in Eq. (5). Let μ be a coefficient that quantifies the ratio

of the resources used to the total resources.

τj(t + 1) = (1 − μ) × τj(t) (5)

The node’s capability increases upon finishing the execution of a task. The increasing value (υ+1)

relies upon the ratio of the released resource [11], [23] as in Eq.(6). Where υ is a coefficient for

characterizing the proportion of the delivered resources to the general resources.

τj(t + 1) = (ν + 1) × τj(t) (6)

Response time (RT) and estimated task execution time (ET) are essential metrics in computing and

performance analysis, particularly in software applications, systems, and cloud computing. Let's define each

term [24]. Response time, also known as latency, is the duration between initiating a request or task and

completing the corresponding action or delivery of the response. It encompasses the time the system takes to

process the request, perform necessary computations, and return the result to the requester.

 Iraqi Journal for Applied Science (ISSN: 3006-5828)

 Developing a Methodology for IOT Load Distribution within Edge Computing (Aymen Mudheher Badr)

66

A lower response time is generally desired, indicating a more responsive and efficient system,

providing a better user experience. Estimated task execution time is a prediction or approximation of the

time it will take for a specific task, job, or computation to complete. It's based on factors such as the

complexity of the task, the capabilities and resources available to execute the task, historical performance

data, and potentially other influencing parameters. Accurately estimating task execution time is crucial for

resource allocation, scheduling, and load balancing to ensure efficient utilization of available computing

resources.

𝐸𝑇 =
TL

Capacity × Cores(T)
 (7)

The main objective of our approach is to reduce the load variance among the processing nodes,

aiming for a value close to zero. The variance, as applied in Equation (8), quantifies the dispersion of data

around the mean value [12]. Let CL represent the current load on the fj node, measured in terms of MIPS,

and V represents the number of nodes. Variance quantifies the extent of dispersion within a certain dataset.

The greater the dispersion of the data, the higher the variance around the mean [12]. Nevertheless, variance

provides more precise information regarding variability compared to standard deviation and is employed for

quantitative conclusions.

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑ (𝑇𝐿(𝑓𝑗)−𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑇𝐿))2

𝑉

𝑗=1

𝑉
 (8)

3. Method

 The IoT devices transmit requests to nodes located at the periphery of the network to select the specific

node to allocate requests. Each node possesses knowledge of the requirements for the given work and the

resources available to the neighboring nodes at the following level. Each node that receives requests

participates in devising a strategy for allocating tasks and selecting the optimal configuration.

The process of diagram production involves each node in the edge that gets a request generating a diagram

to allocate tasks and calculate the anticipated total execution time in each outline, as shown in Equation (9).

𝐸𝑇𝑇𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑇𝑖,𝑗 (9)

Each node aims to find the scheme that achieves the least execution time, so if the closest end nodes are fit

for executing the approaching errands, the tasks will be relegated to them to decrease deadline time

infringement and lessen network traffic. The proposed method is explained as follows:

Input: {a: group that conatain request services, n: group of nodes}

Output: {Δ: group of plans}

for (q=1 to Δ) do

Sort a in the order (Deadlinei - WTi from low to high;

h ← select neighboring nodes from n;

Sort h in term of proximity from low to high;

i,j ← 0;

while (a is not empty) do

Select ai from a and fj from h;

if (fj resources can hosted ai) then

assign ai to fj;

Update fj load according to (6);

elseif (the cloud node (ck) has enough capacity) then

assign ai to ck;

Update ck load according to (6);

end if;

Remove ai from a;

i++, j++;

end while;

calcuate ETTotal according to (9);

calcuate variance according to (8);

end for

Sort Δ in the order of ETTotal from low to high;

Return Δ;

 Iraqi Journal for Applied Science (ISSN: 3006-5828)

 Developing a Methodology for IOT Load Distribution within Edge Computing (Aymen Mudheher Badr)

67

To create a single assignment schema, each edge node organizes incoming tasks based on the

difference between the deadline and waiting time, arranging them from lowest to highest. Subsequently, the

node randomly selects a group of neighboring nodes on the second level capable of receiving the task. These

chosen second-level nodes are then ordered by distance from nearest to farthest. The node proceeds to assign

the tasks sorted in the initial step one at a time, calculating the total estimated execution time and variance

for each assignment, ultimately generating the schema. Finally, the resulting schemas are shared with all

edge nodes to determine the optimal task allocation through optimization. Each edge node generates multiple

proposals through the scheme selection process, each providing a comprehensive estimate of the overall

implementation time and variance for that particular scheme. Subsequently, all edge nodes work together to

ascertain the most advantageous plan among the feasible alternatives. The system administrator defines the

iteration completion requirements and specifies a predetermined number of iterations. After completing all

iterations, each agent distributes incoming tasks according to the selected scheme among all agents,

assigning them to nodes located on the second level or the cloud center.

4. RESULTS AND DISCUSSION

In this study, an alternative network structure is crafted using two graphical representations: Barbasi

Albert (BA) [18] and Erdos Renyi (ER) [20]. The network diagrams for these models concerning networks

comprising (1000, 800, 600, 400, and 200) nodes are depicted in Figure 2.

Figure 2. An analysis of network diagrams for two visual models, Barbasi Albert (BA) and Erdos Renyi (ER),

in a network consisting of 1000, 800, 600, 400, and 200 nodes

Using Java within NetBeans, the simulation emulated a network of nodes from the edge to the

cloud. The Java GraphicStream library facilitated the preceding graphic modeling. The workload input was

derived from the Google Cluster Trace dataset [25]. Each agent was assigned 20 plans. The assessment was

conducted over five intervals, employing the ER_1000, BA_1000, and BS_1000 topologies, with results

extracted for each period. An evaluation compared the First Fit (FF) model [26] with a cloud center that did

not include an edge component. The latter is dependent on reducing the number of transition delays between

nodes. Every individual node tracks the transition delays, measured in hops, between itself and other nodes,

generating a priority list among the adjacent nodes. Assigning priority to tasks is contingent upon the nodes

having adequate resources to carry out the task. For both the suggested method and the FF model, the

assessment involves determining the resource utilization ratio (1- τj) for each node and then calculating the

variance to achieve a variance as near to zero as feasible.

Table 2 presents the resource consumption variance (load) difference at various phases between the

proposed model, the FF model, and the cloud center without an edge.

 Iraqi Journal for Applied Science (ISSN: 3006-5828)

 Developing a Methodology for IOT Load Distribution within Edge Computing (Aymen Mudheher Badr)

68

Table 2. The variance of the resources consumed (load) of each model

 FF model Proposed model Cloud model

ER_1000_P1 0.1521 0.005 0.2043

ER_1000_P2 0.1764 0.0519 0.2097

ER_1000_P3 0.0961 0.0529 0.1004

ER_1000_P4 0.0529 0.0510 0.0547

ER_1000_P5 0.051 0.0316 0.0345

BA_1000_P1 0.1576 0.0501 0.2043

BA_1000_P2 0.1722 0.024 0.2016

BA_1000_P3 0.1011 0.07 0.1017

BA_1000_P4 0.058 0.0723 0.059

BA_1000_P5 0.0625 0.0712 0.0691

Figure 3 illustrates the differences in resource consumption (load) variations at different stages between the proposed

model, the FF model, and a cloud center lacking an edge component.

The results demonstrate that the proposed model is superior than the FF model. The proposed

model demonstrated a lower variance in load among nodes compared to the FF model, showcasing optimal

utilization of available resources. This optimal resource utilization helps reduce costs by efficiently

leveraging existing resources and minimizing the need for costly additional equipment. The proposed model

achieves this by effectively balancing the load, ensuring fair and intelligent distribution of tasks based on

task size, requirements, deadlines, and contractual resources, ultimately enhancing response times.

Additionally, the proposed model mitigates overloaded and underloaded nodes, thus averting potential

bottlenecks associated with high-load nodes.

Also, compared to the used topologies, the proposed model performs more efficiently if the ER

topology is used. This is because the ER topology is somewhat random and represents large networks, while

the WS topology is designed to create random networks. The goal was to simulate small world networks

(inspired by sociology), or in general, networks that are embedded in some geometry and have a short-range

basis and some long-range connections according to this geometry.

 Iraqi Journal for Applied Science (ISSN: 3006-5828)

 Developing a Methodology for IOT Load Distribution within Edge Computing (Aymen Mudheher Badr)

69

5. CONCLUSION

Effective allocation of resources in the emerging IoT infrastructure is crucial for addressing the

challenges in cloud-based technologies while fulfilling a wide range of IoT management requirements. This

work introduces an alternative approach to address load balancing in cloud computing within a diverse

resource environment. The findings demonstrated that the suggested methodology yields a successful and

optimal load, surpassing the performance of all the FF and cloud models. This paper concentrates on how

optimizing the IoT administration position presents IoT benefits and gets a fair load dispersion while using

resources on the network's edge. The proposed model presents a method to generate a local plan, and the

plane selection is collaborative. The fair distribution of the resource increases the robustness of the system.

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude to Diyala University for providing the necessary

infrastructure and laboratory facilities to conduct the research presented in this paper.

REFERENCES
[1] Fatima Zahra Fagroud, et al. “Internet of Things Search Engines: Toward a General Architecture.” Indonesian

Journal of Electrical Engineering and Computer Science, vol. 28, no. 2, 1 Nov. 2022, pp. 1117–1117,
https://doi.org/10.11591/ijeecs.v28.i2.pp1117-1127. Accessed 23 May 2024.

[2] Atiqur, Rahman, Guangfu Wu, and Ali Md Liton. ”Mobile edge computing for internet of things (IoT): security and
privacy issues.” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) 18.3 (2020): 1486-
1493, DOI:10.11591/ijeecs.v18.i3.pp1486-1493.

[3] Buyya, Rajkumar, and Satish Narayana Srirama, eds. Fog and edge computing: principles and paradigms. JohnWiley
& Sons, 2019.

[4] Sehrawat, Deepti, and Nasib Singh Gill. ”Smart sensors: Analysis of different types of IoT sensors.” 2019 3rd
International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2019, DOI:
10.1109/ICOEI.2019.8862778.

[5] Hazra, Abhishek, et al. ”Fog computing for next-generation internet of things: fundamental, state-of-the-art and
research challenges.”Computer Science Review 48 (2023): 100549, https://doi.org/10.1016/j.cosrev.2023.100549.

[6] Laroui, Mohammed, et al. ”Edge and fog computing for IoT: A survey on current research activities & future
directions.” Computer Communications 180 (2021): 210-231, https://doi.org/10.1016/j.comcom.2021.09.003.

[7] Mahadevappa P., Murugesan R.K. A data quarantine model to secure data in edge computing. International Journal
of Electrical and Computer Engineering 2022; 12(3): 3309-3319, https://doi.org/10.48550/arXiv.2111.07672. .

[8] Kashani, Mostafa Haghi, and Ebrahim Mahdipour. ”Load balancing algorithms in fog computing.” IEEE
Transactions on Services Computing 16.2 (2022): 1505-1521, DOI: 10.1109/TSC.2022.3174475.

[9] Costa, Breno, et al. ”Orchestration in fog computing: A comprehensive survey.” ACM Computing Surveys (CSUR)
55.2 (2022):1-34, https://doi.org/10.1145/3486221.

[10] Chalack, Vahid Asadzadeh, S. N. Razavi, and S. J. Gudakahriz. ”Resource allocation in cloud environment using
approaches based particle swarm optimization.” International Journal of Computer Applications Technology and
Research 6.2 (2017): 87-90.

[11] Gao, Ren, and Juebo Wu. ”Dynamic load balancing strategy for cloud computing with ant colony optimization.”
Future Internet 7.4 (2015): 465-483, https://doi.org/10.3390/fi7040465.

[12] Dhari, Atyaf, and Khaldun I. Arif. ”An efficient load balancing scheme for cloud computing.” Indian Journal of
Science and Technology 10.11 (2017): 1-8.

[13] Phi, Nguyen Xuan, et al. ”Proposed load balancing algorithm to reduce response time and processing time on cloud
computing.” Int. J. Comput. Netw. Commun 10.3 (2018): 87-98, DOI : 10.5121/ijcnc.2018.10307.

[14] Stephen, A., BJ Hubert Shanthan, and Daks Ravindran. ”Enhanced round Robin algorithm for cloud computing.”
Int J Sci Res Comput Sci Appl Manag Stud 7.4 (2018): 1-5.

[15] Fadahunsi, Olamilekan, and Muthucumaru Maheswaran. ”Locality sensitive request distribution for fog and cloud
servers.” Service Oriented Computing and Applications 13 (2019): 127-140, https://doi.org/10.1007/s11761-019-
00260-2.

[16] Mijuskovic, Adriana, et al. ”Resource management techniques for cloud/fog and edge computing: An evaluation
framework and classification.” Sensors 21.5 (2021): 1832, https://doi.org/10.3390/s21051832.

[17] Leus, Geert, et al. ”Graph Signal Processing: History, development, impact, and outlook.” IEEE Signal Processing
Magazine 40.4 (2023): 49-60, DOI: 10.1109/MSP.2023.3262906.

[18] Huang, Haiping. Statistical mechanics of neural networks. Singapore: Springer, 2021.

[19] Xia, Yongxiang, Jin Fan, and David Hill. ”Cascading failure in Watts–Strogatz small-world networks.” Physica A:
Statistical Mechanics and its Applications 389.6 (2010): 1281-1285, https://doi.org/10.1016/j.physa.2009.11.037.

[20] Mart´ınez-Mart´ınez, C. T., et al. ”Computational and analytical studies of the Randi´c index in Erd¨os–R´enyi
models.” Applied Mathematics and Computation 377 (2020): 125137, https://doi.org/10.1016/j.amc.2020.125137.

[21] Raghava, N. S., and Deepti Singh. ”Comparative study on load balancing techniques in cloud computing.” Open
journal of mobile computing and cloud computing 1.1 (2014): 18-25.

[22] Shafiq, Dalia Abdulkareem, N. Z. Jhanjhi, and Azween Abdullah. ”Load balancing techniques in cloud computing
environment: A review.” Journal of King Saud University-Computer and Information Sciences 34.7 (2022): 3910-
3933,

https://doi.org/10.1016/j.jksuci.2021.02.007.

[23] Liu, Chang, et al. ”Solving the multi-objective problem of IoT service placement in fog computing using cuckoo
search algorithm.” Neural Processing Letters 54.3 (2022): 1823-1854, https://doi.org/10.1007/s11063-021-10708-2.

[24] Shafiq, Dalia Abdulkareem, et al. ”A load balancing algorithm for the data centres to optimize cloud computing
applications.” IEEE Access 9 (2021): 41731-41744, DOI: 10.1109/ACCESS.2021.3065308.

 Iraqi Journal for Applied Science (ISSN: 3006-5828)

 Developing a Methodology for IOT Load Distribution within Edge Computing (Aymen Mudheher Badr)

70

[25] Alam, Mansaf, Kashish Ara Shakil, and Shuchi Sethi. ”Analysis and clustering of workload in google cluster trace
based on resource usage.” 2016 IEEE Intl conference on computational science and engineering (CSE) and IEEE
Intl conference on embedded and ubiquitous computing (EUC) and 15th Intl symposium on distributed computing
and applications for business engineering (DCABES). IEEE, 2016, DOI: 10.1109/CSE-EUC-DCABES.2016.271.

[26] D´osa, Gy¨orgy, and Jir´ı Sgall. ”First Fit bin packing: A tight analysis.” 30th International symposium on
theoretical aspects of computer science (STACS 2013). Schloss-Dagstuhl-Leibniz Zentrum f¨ur Informatik, 2013,
https://doi.org/10.4230/LIPIcs.STACS.2013.538.

BIOGRAPHIES OF AUTHORS

Abdullah Farhan Mahdi: He holds a master's degree in 2012 from the University of Anbar,

College of Computer Science and Information Technology, specializing in data warehouses. In

2023, he obtained a doctorate from the University of Anbar, College of Computer Science and

Information Technology, specializing in artificial intelligence. He is a lecturer at the University of

Diyala, College of Agriculture. He can be contacted at email: abdullahmahdi@uodiyala.edu.iq.

Aymen Mudheher Badr: He obtained a Bachelor of Science in Computer Science in 2001. And

an M.S. degree in computer science from Chongqing University, China, in 2015. He has worked

as a lecturer at Diyala University since 2003 until now. He holds a PhD in Computer Science -

Medical Informatics from Safx University, Digital Research Center of Sfax (CRNS) Laboratory

of Signals, Systems, Artificial Intelligence and Networks (SM@RTS), Tunisia, 2024. He can be

contacted at email: aymen.m.badr@uodiyala.edu.iq.

Israa Mishkhal was born in Iraq, in Baqubah. She obtained a bachelor’s degree in computer

science from Diyala University. She holds a master's degree in computer science from Ball State

University (BSU) in the United States of America. She is a Ph.D. student at Universiti Sains

Malaysia, Computer Science. She is a lecturer at College Science/Diyala University, Iraq

(Diyala). She has many research papers in national and international conferences.

email: israaadnan@uodiyala.edu.iq, israa_adnan85@student.usm.my

mailto:israaadnan@uodiyala.edu.iq,%20israa_adnan85@student.usm.my

