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Network Intrusion Detection System (NIDS) is a mechanism for detecting 

anomaly in computer networks. Several NIDS techniques have been 

developed in the past, but these techniques are still limited in detection 

accuracy, error rate and in detecting new attacks. In this study, a Hybrid 

Network Intrusion Detection Framework using Neural Network-Based 

Decision Tree model for NIDS was developed. The developed model is 

divided into four modules: Data collection, data preprocessing, feature 

selection and detection. The data collection module adapted the NSL-KDD 

dataset for implementation due to its modern attack representation. The data 

preprocessing module used the random undersampling technique to reduce 

data imbalance problem. The feature selection module consists of a hybrid 

feature selection method to select the most important features from the 

adapted intrusion dataset. The detection module involves a neural network-

based decision tree classifier for the automatic generation of rules for intrusion 

detection. The results showed that the developed model based on the full 

dataset is better than the other related methods with TP, FP, accuracy, 

precision, recall, and F1-score of 98.7, 1.3, 98.42%, 98.54%, 98.56% and 

98.56 respectively. Similarly, the results showed that the developed method 

based on the reduced dataset is better than the other related methods with TP, 

FP, accuracy, precision, recall, and F1-score of 98.9, 1.2, 99.42%, 99.54%, 

99.56%, and 99.56% respectively. 
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1. INTRODUCTION 

The internet has developed into a natural phenomenon that is inextricably linked to people's everyday 

lives, and a significant amount of data needs to be secured from various illicit actions [1]. Concentrated network 

attacks are possible because attackers are always drawn to valuable information. According to [2], the main 

goal of data security is to develop and apply protective computer models that are invulnerable to usage, 

disclosure, interruption, alteration, and damage, as well as security breaches. Moreover, information security 

reduces actions that could compromise the three main security objectives of integrity, availability, and 

confidentiality [3]. Ensuring that the information sent is only accessible to those who should be in possession 

of it is the goal of confidentiality. To guard against unwanted access, the information is encrypted. Making 

sure that the data is not intercepted or manipulated is the focus of integrity. It guarantees that the sender's 

intended message is received exactly by the recipient. Availability guarantees that a network or system resource 

can be used and reached when needed by a system that has been given permission. A system's security is 

jeopardized when there is a breach. The numerous repercussions of these attacks have led researchers to create 

systems that can identify intrusions. The primary goal of creating intrusion detection systems (IDSs) is to 

distinguish between malicious and benign attacks. Intrusion detection systems can be categorized based on 

their environments [4] and their detection mechanisms [5]. Intrusion detection systems are further divided into 

two categories based on the environments in which they operate: host-based IDS (HIDS) and network-based 
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IDS (NIDS). The detection mechanism is further categorized into Anomaly-based Intrusion Detection Systems 

(AIDS) and Signature-based Intrusion Detection Systems (SIDS). Researchers are particularly focused on 

anomaly-based IDS since it has the advantage of being able to detect new patterns, whereas signature-based 

IDS has limitations in this regard [6, 7, 8, 9]. Notwithstanding their creation, a variety of intrusion detection 

systems remain open to attack [10]. In addition, despite the application of artificial intelligence and traditional 

machine learning algorithms to increase detection accuracy of intrusion detection systems, current intrusion 

detection systems continue to achieve poor performance [11, 12].  According to researchers, feature selection 

should be used in the pre-processing stage of machine learning algorithms to exclude irrelevant features, 

increase detection accuracy and reduce computational complexity. Feature selection can be categorized into 

filter, wrapper, and embedded methods. Akyol and Atila [13] suggested that feature selection strategy works 

well for developing and implementing intrusion detection systems with increased accuracy. The majority of 

anomaly detection systems used feature selection methods on the intrusion datasets to achieve higher accuracy 

and a lower false alarm rate [14].  The dataset is preprocessed to remove redundant features and noise, leaving 

a smaller set of features for the development of a high-performance model for the prediction of attack types 

with the base classifier.  

This study however developed a Hybrid Network Intrusion Detection Framework using Neural Network-

Based Decision Tree (HNIDF-NN-DT) model. The developed model is a neural network-based decision tree 

model that combine the high-level interpretability of decision tree with high decision-making accuracy of the 

neural network. The developed model is divided into data collection, data preprocessing, feature selection, and 

detection. The data collection module adapted the NSL-KDD dataset for implementation due to its modern 

attack representation. The data preprocessing module convert the collected dataset into the format suitable for 

machine learning algorithms. The data preprocessing module also used random undersampling method to 

reduce data class imbalance problem. The feature selection module consists of a hybrid feature selection 

method to select the most important features from the preprocessed dataset. The detection module involves a 

neural network-based decision tree classifier for the automatic generation of rules for intrusion detection. Each 

node of the decision tree represents a neural network processing unit. The node partitioning entropy function 

of the decision tree was replaced by the sigmoid function of the neural network. The selected features from the 

feature selection module serve as input into a neural network-based decision tree classifier to generate the rules 

for the automatic design of NIDS and accurate prediction of attacks. The decision tree provides the detection 

rules for the interpretability of detection decisions and the neural network provide the accuracy needed for 

attack detection. The contribution of this study include: (1) The use of a hybrid feature selection method for 

optimal feature selection. (2) The use of random under sampling method in the preprocessing phase to reduce 

dataset imbalance problem. (3) The use of a neural network-based decision tree model for network intrusion 

detection system to automatically generate the rules for intrusion detection. The neural network-based decision 

tree is for the decision tree to provide the detection rules for the interpretability of detection decisions and the 

neural network to provide the accuracy needed for attack detection. The rest of this study is organized as 

follows: Section 2 includes related work. The materials and method are presented in section 3. The results and 

discussion are presented in section 4. Section 5 conclude the work with a summary of the findings. 

2. Literature review 

2.1 Motivation of the work 

The need to detect intrusions accurately grows daily as attackers keep getting sophisticated. The 

motivation of this study is focused on developing an intrusion detection system capable enough to detect new 

attacks and classify attacks accurately. Most of the past techniques for network intrusion detection cannot 

detect new attacks and are limited in terms of detection accuracy and false alarm rates. The research and 

implementation of advanced network intrusion detection techniques based on machine learning will contribute 

to the understanding of network security and anomaly detection. 

2.2 Feature selection 

One of the problems machine learning algorithms confront is high dimensionality. These days, it's 

typical to have datasets with a large number of fields or columns. Large datasets are typically employed in 

intrusion detection systems, and employing machine learning techniques to train the system on datasets with 

lots of features can take a lot of time, increase learning complexity, and have a negative effect on the system if 

irrelevant characteristics are used. Thus, feature extraction or selection aids in eliminating extraneous features 

or noise from the data, increasing the classification rate. The main distinction between feature selection and 

extraction is that the former creates new features or columns based on preexisting features, sometimes 

misinterpreting the data, while the latter selects features without altering the original data or creating new 

features or columns to be used. Researchers have confirmed that feature selection is a critical and significant 

phase in machine learning. Machine learning feature selection techniques are broadly divided into three 

categories: 

2.2.1 Filter method 

Using the filter method, features are subjected to statistic measurements. A feature is then either 

chosen or rejected based on the specified threshold. The Filter method's inability to take into account the base 

classifier—that is, its independence from the classifier—and propensity to choose sizable feature subsets are 

drawbacks. One advantage is its speed, as it doesn't necessitate communication with the classifier; another is 
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its generality, as it assesses the characteristics of the input. Some of the filter techniques employed to the dataset 

for feature selection are Information Gain, Correlation-based, and Chi squared test. 

2.2.2 Wrapper method 

 Wrapper method accounts for the classifier. Because many feature combinations are examined, it depends 

on the classifier and is typically computationally demanding. It assesses the accuracy of feature subsets. 

Because there is interaction between the wrapper and the classifier, it has the benefit of reaching a high 

accuracy. The lack of generality of the wrapper method is an additional drawback, in addition to its 

computational complexity and sluggish execution speed. The subset of features will only be unique to the 

classifier that is being evaluated. 

2.2.3 Embedded method 

Embedded method incorporates the advantages of both the wrapper and filter approaches by adding 

feature associations and drastically reducing computational costs. Each time the training process is repeated 

using iterative approaches, the features that contribute the most to the training for that iteration are carefully 

extracted. Many subsets are produced from the dataset by the embedded approach. It selects features for the 

model at random and tries to execute every possible combination. A subset of features will be selected and 

added to the dataset for training based on the subset with the highest accuracy. 

2.3 Neural network 

A neural network is a highly connected and adaptive deep learning model. The network is a 

hierarchical network structure made up of several vertices and interconnected edges. The vertices represent the 

processing unit and the interconnection of edges between vertices denote the association between connected 

vertices. At each iteration, the vertices broadcast faults backward as part of iterative learning, which increases 

the accuracy of the network. The network employed weight adjustment to lessen the learning error by 

constructing the vertices from attached weights. To control the network's output, a number of activation 

functions are also utilized. 

2.4 Decision tree (DT) 

Alpaydin [15] defines a decision tree as a “hierarchical data structure implementing the divide-and-

conquer strategy”. It is a nonparametric technique that is suitable for both classification and regression 

problems. The model is tree-like in architecture which can easily be interpreted. It learns by performing feature 

selection, generating, and pruning trees. During training, the algorithm can select the most suitable features 

and build child nodes from the root node. Decision tree classifiers that have been used are ID4, C4.5, and 

CART, they have better accuracy for known intrusions but are not good at detecting unknown intrusions [16]. 

Ingre et al. [17] proposed a decision tree-based IDS for the NSL-KDD dataset. In the study, fourteen features 

were selected from the dataset using the correlated feature selection (CSF) method. The overall accuracy was 

83.7% and 90.3%. Azad and Jha [18] also proposed an intrusion detection system based on a C4.5 decision 

tree on a KDD Cup 99 dataset and a high accuracy of 99.89% was achieved. 

2.5 Related studies 

Various researchers have proposed various methods for the detection of an intrusion based on data 

mining techniques. Khan et al. [19] developed a hybrid deep learning ID framework that combines a recurrent 

neural network (CRNN) and a convolutional neural network (CNN) to classify hostile attacks within the 

network. In the HCRNNIDS, temporal features were caught by the recurrent neural network (RNN) to improve 

the ID system's classification and accuracy, while native attributes were captured by the convolutional neural 

network (CNN). The CIC-DS 2018 ID data collection was used in studies. The hybrid intrusion detection 

system (HCRNNIDS) outperformed the ID approaches assessed by the researchers, with a detection rate of 

97.7%, according to the results of its investigation. Thaseen et al. [20] developed an integrated ID system that 

prioritizes features based only on the strongest correlation between the class outcome and the features 

combined with Artificial Neural Network (ANN). This is achieved through the use of correlation-based feature 

selection. We conducted an experimental analysis on the UNSW-NB ID and NSL-KDD datasets. The model 

performed better in terms of sensitivity, accuracy, and specificity than several state-of-the-art methods. 

However, there were several disadvantages to the model's use of ANN. It took a long time and a lot of training 

data to complete the IDS training. Adding more layers improved the findings, but the model's memory and 

computational performance remained poor. Artificial neural network characteristics such as the number of 

hidden layers and neurons per layer enhanced system performance at the expense of increased temporal 

complexity. Salih and Abdulazeez [21] examined 17 current methods that have been put out by different 

scholars between 2018 and 2020. Selecting an algorithm has proven to be a challenging issue; researchers felt 

that evaluating the performance of several classifiers was the best approach, which prompted a review of the 

systems that were already in place. The review's conclusion is that feature selection improves the model's 

performance by reducing training and testing times through the removal of superfluous features. Hybrid 

classifiers may also offer the best option for attack detection. In the end, Practical Swarm Optimization (PSO) 

produced the best results for feature selection, whereas Random Forest obtained the best accuracy.  Choudhury 

and Bhowal [22] examined the application of machine learning algorithms and a variety of categorization 

approaches to analyze network traffic. It was determined that J48, Random Tree, BayesNet, PART, Logistic, 

Random Forest, REPTree, IBK, and JRip were suitable for the classification method. More attention was paid 

to the machine learning techniques of bagging, boosting, and blending (or stacking), and analyses of their 



Iraqi Journal for Applied Science (IJAS)  

 

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model 

(Femi Emmanuel Ayo) 

 

77 

accuracy were conducted. These algorithms were compared using the WEKA tool, and the outcomes were 

displayed according to performance standards. Using the NSL-KDD dataset, cross validation at tenfolds was 

used to simulate the classification models. The researchers discovered that Random Forest and BayesNet 

worked well. In comparison to Bagging, Boosting, and Blending, Boosting performed significantly better. The 

researchers went on to say that the suggested algorithms might be utilized to create security-related network 

intrusion detection devices that operate well. 

Mahfouz et al. [23] examined classifiers by taking into account three distinct dimensions: feature 

selection, hyper-parameter selection, and class imbalances. They only examined supervised machine learning 

techniques in their analysis. The SMO (SVM), Naive Bayes, J48 (DT), Multilayer Perceptron (NN), Logistic 

Regression, and IBK (KNN) methods were taken into consideration by the researchers. The models were 

constructed for various stages. Phase one involved using the chosen classifiers with their default settings and 

using the dataset without any preprocessing. By applying Stratified Cross-Validation with 10 folds on the 

training set of data from the NSL-KDD dataset, the classifiers were trained. Over-fitting is evident in all 

classifiers based on the accuracy of the training and test sets. At the second phase, data preprocessing was 

done. The selection of features was done using the InfoGainAttributeEval technique, and the hyperparameter 

optimization for each classifier was done using CVParameterSelection. Overfitting was found even though the 

second phase's accuracy was higher than the first phases. By undersampling the dominant classes and 

oversampling the minority classes, the third phase attempted to reduce the class imbalance in the dataset. In 

contrast to the first and second phases, the mitigation of imbalance classes helped lessen the barriers to the 

identification of R2L and U2R attacks. 

Kajal and Nandal [4] used an artificial bee colony (ABC) in conjunction with a genetic algorithm and 

the Discrete Wavelet Transform (DWT) for feature selection. Their study's objective was to develop an 

intrusion detection system that could reliably identify attacks that were restricted to Denial of Service (DDOS) 

attacks by utilizing the KDD dataset. The hybridized Artificial Neural Network and Support Vector Machine 

(ANN-SVM) was used by the system as the foundation classifier. The suggested method was found to have 

outperformed the other two existing systems in terms of effectiveness when it came to detecting intrusions 

using the KDD dataset against denial-of-service attacks. In their research, [1] suggested using the random forest 

classifier and principal component analysis (PCA) to create a model for an effective intrusion detection system. 

Specifically, the study provided a technique for creating an effective IDS. Principal component analysis helped 

to extract features from the data by reducing its dimensions, while random forest helped to classify attacks 

using the Knowledge Discovery Dataset (KDD) into normal and intrusion categories. First, they used PCA to 

extract characteristics, followed by random forest to classify attacks, and lastly, model evaluation. The study 

by Kasongo and Sun [24] used a Wrapper based Feature Extraction Unit (WFEU) to implement a Feed-forward 

Deep Neural Network (FFDNN) wireless Intrusion Detection System. The Extra Trees technique was 

employed by the WFEU approach to extract optimal features. The UNSW and AWID datasets were used to 

evaluate the model's efficacy and efficiency. The system was compared to several different machine learning 

algorithms that are currently in use, such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), 

Random Forest (RF), Naive Bayes (NB), and Decision Tree (DT). Following feature extraction with the 

WFEU, input was utilized for various algorithms for binary and multi-class classification, including the 

FFDNN classifier. The WFEU-FFDNN technique outperformed the other approaches in terms of accuracy, 

and the results show that the recommended system performed very well when compared to previous efforts. 

Zhou et al. [25] suggested the heuristic Correlation-based Feature Selection - Bat Algorithm (CFS-

BA) in order to reduce the dimensionality of the dataset owing to the several redundant features in datasets. 

Additionally, the researchers presented a voting method that integrated the Random Forest's AO (average of 

probabilities) rule, Forest by Penalizing, and the C4.5 probability distributions. identifies methods as ensemble 

because a classifier might not be effective in identifying every possible combination of threats. The objective 

of the research is to develop an objective model that minimizes the amount of time and computational 

complexity needed to enhance the stability and dependability of the intrusion detection system. Evaluation and 

cross-validation were conducted on the NSL-KDD, AWID, and CIC-IDS datasets. The CFS-BA algorithm was 

implemented, and relevant features were obtained. These features demonstrate that the approach was successful 

in achieving the intended goal and drastically reducing dimensionality. For example, the NSL-KDD dataset 

saw a reduction of 41 features to 10, the AWID dataset saw a reduction of 155 features to 8, and the CIC-IDS 

saw a reduction of 78 features to 13 features. According to the analyses, comparisons, and findings, the CFS-

BA-Ensemble approach has significant advantages for intrusion detection systems. 

Halimaa and Sundarakantham [26] used 19,000 records from the NSL-KDD dataset to compare the 

prediction accuracy and misclassification rate of two prediction models, Naive Bayes and SVM, in three 

distinct scenarios. The models in the first scenario made predictions based on a dataset that was not pre-

processed. In the second case, the models made predictions based on the characteristics obtained and the 

features were selected using CfsSubsetEval. In the third case, the researchers fed the models with the 

normalized data after normalizing the dataset for prediction. There were notable variations in each scenario's 

accuracy and misclassification rates. SVM outperformed Naive Bayes in every situation in terms of accuracy 

and misclassification rate.  
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Bhati and Rai [27] used the effectiveness of support vector machine (SVM) variants on the NSL-KDD 

dataset, including Fine Gaussian (98.7%), Medium Gaussian (98.5%), Quadratic (96.1%), and Linear (98.6%). 

IDS implementation consisted of four main steps: gathering data, preprocessing, splitting the data into train 

and test sets, and lastly evaluating the model using metrics for confusion matrix, accuracy, and Receiver 

Operating Characteristic (ROC). Based on the results, it was found that the Fine Gaussian SVM variation had 

the best intrusion detection accuracy and lowest error rate.  Bindra and Sood [28] analyzed Random Forest ML, 

Linear SVM, K-Nearest Neighbor (KNN), Discriminant Analysis, Gaussian Naive Bayes, and Logistic 

Regression algorithms in order to identify DDoS attacks in networks. The CIC-IDS-2017 dataset was used to 

train and evaluate the methods that are compared in this research. With a 96.2% accuracy rating, Random 

Forest was the most accurate model. The study credits the algorithm's usage of cross-validation for the 

successful outcome. The tests also highlight the need to reduce the dataset's dimensionality; the Select 

Percentile technique was used to reduce the features from 85 to 12, and the median of an attribute was used in 

place of nan, which is not a number. 

Chu et al. [29] examined the outcomes of machine learning (ML) methods on the NSL-KDD dataset. 

These methods included the use of SVM, Nave Bayes, Decision Trees, and Artificial Neural Networks (ANN) 

with MLP to identify Probe, DoS, Remote to Local, and User to Root assaults. The precision of SVM was 

97.72 percent; that of ANN was 97.82 percent; that of Nave Bayes was 90 percent; and that of the J48 was 59.3 

percent. The researchers found that adjusting the gamma and c parameters allowed SVM to achieve high 

accuracy, but adding four layers to the Artificial Neural Network produced the highest accuracy. Although the 

two algorithms that performed better did not show a significant difference in their results, the researchers found 

that when they applied principal component analysis to minimize the feature space of the data on the NSL-

KDD dataset, the speed of classification increased significantly.  Kim et al. [30] built an Intrusion Detection 

System model using a convolutional neural network (CNN) and assessed it by contrasting it with a model 

created using a recurrent neural network (RNN) using the CSE-CIC-IDS 2018 dataset. The data underwent 

preprocessing, and features were selected. The dataset must be converted into pictures for a CNN. A model 

consists of a fully linked layer, max-pooling layers, and convolutional layers. The model was implemented by 

deploying maxpooling behind each convolutional layer. The max pooling layer was necessary even though a 

CNN model does not need it since there is very little chance of losing significant features from the max pooling 

because the modified images solely include quantitative data and do not contain any unseen signatures. 

Moreover, the activation function'relu' was used for every convolutional layer. Every stage of the max pooling 

process involves lead dropout in an attempt to reduce overfitting. Lastly, a fully connected layer is positioned 

underneath the final max-pooling layer. Applying the CNN model to the CIC-2018 dataset showed that it 

performed better in label classification than the RNN model. Additionally, one method suggested to enhance 

the model's performance was to prepare the dataset with a proportion of data categorized as benign and data 

labeled as attacks. In their study, Patgiri et al. [31] used Random Forest and Support Vector Machine to 

examine the use of machine learning for intrusion detection. Recursive feature elimination (RFE) was used to 

filter relevant features for both classifiers in an effort to reduce computing time. The models created were 

evaluated using the NSL-KDD dataset. The researchers found that the substantial experimentation they 

conducted was both time-consuming and negatively impacted performance. Before the Recursive Feature 

Elimination approach was used, Random Forest's performance was superior to SVM's. Conversely, after 

applying Recursive feature Elimination Cross Validation (RFECV) with the classifiers, SVM outperformed 

Random Forest in terms of performance. 

Taher et al. [32] used the NSL-KDD dataset to assess the effectiveness of SVM and artificial neural 

networks. Their goal was to identify the classifier that had the highest accuracy and success rate. A wrapper 

method was used to choose the features for the proposed models, resulting in a reduction of 35 features to 17. 

The study also sought to determine the ideal learning rate and number of hidden layers; the findings indicate 

that three hidden layers and a learning rate of 0.1 were optimal. The two classifiers were compared both before 

and after feature selection was used in the evaluation process. When feature selection was used in either 

scenario, the detection accuracy was higher; and artificial neural network performed better in both instances.  

Xu et al. [33] presented an anomaly-based intrusion detection system, an optimization technique, a weighted 

KNN, and the elimination of feature selection in an effort to enhance network intrusion detection performance. 

The KDDCup intrusion detection dataset was used to evaluate the suggested IDS, and the results show that 

weighted KNN increased efficiency at the expense of a slight accuracy loss. The researchers found that Naïve 

Bayes and SVM can also be utilized for this purpose, even though only KNN was tested, and they stated that 

they expect to apply SVM and Naive Bayes parameter optimization in the future. 

Yulianto et al. [34] addressed the imbalance of training data (CIC-IDS 2017 Monday-Working-Hours-

DDoS-Attack dataset) by improving the performance of an AdaBoost-based Intrusion Detection System that 

was already in place [35]. Significant attributes were selected using Principal Component Analysis (PCA), 

Ensemble Feature Selection (glm, gbm, treebag, ridge and lasso), and Synthetic Minority Oversampling 

Technique (SMOTE). The AdaBoost classifier was used for the label classification. First, the 225,745 records 

of data were cleaned and scaled in accordance with the suggested methodology. The dataset was then divided 

into two subsets: training, which comprised 70 percent of the data (158,022 records), and testing, which made 

up the remaining 30 percent (67,723 records). SMOTE was employed to oversample the unbalanced classes, 
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and 25 features were selected using the Ensemble technique. Five iterations of cross-validation were carried 

out after the model was built using AdaBoost. Ultimately, the precision, recall, and accuracy criteria were used 

to evaluate the efficiency of model. The results showed that the suggested technique performed better than 

[35]. Haripriya and Jabba [36] examined a number of machine learning algorithms that have been proposed by 

prior research to find the best methods for intrusion detection system. Single, hybrid, and ensemble classifiers 

were among the methods employed in the review of previous research. As a result, no specific way could be 

chosen for the development of the Intrusion Detection System, according to the researchers, who discovered 

that every algorithm has unique significance and contributions when compared to other approaches. 

Additionally, when a particular quantity of traffic data is unavailable, the researchers found that it can be 

challenging to train algorithms. 

The work conducted by Ashraf et al. [37] employed J48, Random Forest, and Naïve Bayes classifiers 

to calculate the detection rate and accuracy of IDSs. The experiments made use of the NSL KDD dataset. The 

study examined the classification efficacy of J48, Random Forest, and Naïve Bayes on the 20% NSL KDD 

dataset. The results showed that Random Forest performed better than Naïve Bayes in terms of accuracy and 

detection rate. Given that all three classifiers were able to reach 90% recall and precision, a hybrid model that 

combines the three might be suggested in the future. Chiba et al. [38] proposed an excellent method for creating 

a Back Propagation Neural Network (BPNN)-based NIDS using KDD CUP' 99 datasets. Models totaling forty-

eight were developed by combining implementation parameters in different ways. After evaluation, two IDSs 

were determined to be the best based on false positive rate, detection rate, F-score, and AUC. the count of 

attributes, normalization, the architecture of the neural network—particularly the nodes to be used in the 

layers—the momentum term, learning rate, and transfer function were the parameters that were found to be the 

most important to be used in the construction of the classifier. In the third stage, the combinations of various 

parameters were generated. In stage four, IDS was put into practice. In the fifth and final stage, the study 

selected two models for comparison based on their respective levels of efficiency. Future research will employ 

an optimized algorithm that looks for the best arguments to affect the model's performance. 

Hajisalem and Babaie [39] proposed a novel hybrid classification technique based on artificial fish 

swarms (AFS) and artificial bee colonies (ABC). The implemented methodology had the following structure: 

dividing up the training datasets, choosing features, creating rules, and using hybrid classification. Based on 

the planned ABC-AFS, the framework was created. Fuzzy C-Means Clustering (FCM) and Correlation-based 

Feature Selection (CFS) methods were applied to divide the training data and remove redundant features. In 

addition to the CART technique, If-Then rules built based on the chosen attributes were used in attempts to 

differentiate between normal and abnormality records. The hybrid approach that was described was trained 

using the rules that were developed. According to performance measures, the suggested approach obtained a 

99 percent detection rate and a 0.01 percent false positive rate using the UNSW-NB15 and NSL-KDD datasets. 

Furthermore, a time and computational cost comparison showed that the model's overhead is equal to that of 

competing options. 

Al-yaseen et al. [40] presented a system framework built on a multi-level hybrid support vector machine and 

extreme learning. The modified K-means was used to reduce the dataset size and obtain smaller samples of the 

dataset, or 10% of the KDD data, which results in tiny quality data, according to the researchers, who claimed 

that SVM takes a lot of training time. There was one ELM classifier and four SVM classifiers used. The 

findings demonstrated that they performed better than cutting-edge techniques and that there were no 

significant variations in the detection performance. Additionally, the results show that the smaller dataset 

contributed to improved accuracy and faster training times. However, using many classifiers led to an extended 

testing period. Lin et al. [41] proposed a KNN model to reduce the feature characterisation of the dataset to 

one dimension, based on Cluster Center and Nearest Neighbors (CANN). The recently obtained dataset was 

employed to assess the foundational classifier. The first dimension of the dataset is where the CANN classifier 

performs better than the KNN and SVM classifiers, according to the results. The frequency of false alarms was 

reduced and the accuracy of identification was higher with the CANN. KNN and SVM were shown to be 

computationally costly when tested on two datasets, however CANN was found to be computationally light. 

Regarding the limitations of the study, CANN failed to identify R2L and U2R attacks since the one-

dimensional representation could not accurately reflect them. Moreover, CANN required extra computations 

to eliminate the separation-based features. 

Maharaj and Khanna [42] worked on Voting Feature Interval (VFI) and Algorithm Reptree. In light 

of the fact that certain classification algorithms forbid the prediction of more than two classes, the researchers 

decided to focus their study's conclusions on developing a classifier capable of multiclass classification. Most 

current systems, they claim, only identify whether an attack has occurred or not and do not provide specific 

information about the type of attack. The KDDCUP dataset was evaluated utilizing the Receiving Operating 

Characteristic (ROC) curve, which provided information on the Area Under Curve (AUC), False Positive Rate 

(FPR), and True Positive Rate (TPR). The analysis that followed led to the conclusion that the REPTree 

learning algorithm is superior and more effective for intrusion detection systems. The goal of the Ghosh et al. 

[43] study was to enhance the performance of the classifier for detecting intrusion by utilizing hybridized K-

Nearest Neighbors and Neural Networks (KNN-NN) and multilevel feature selection. Before the classification, 

four steps were required: first, the NSL-KDD data set used for the experimental analysis was preprocessed; 



Iraqi Journal for Applied Science (IJAS)  

 

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model 

(Femi Emmanuel Ayo) 

 

80 

second, the Rough Set Theory (RST) wrapper method was chosen for the first feature selection; and third, 

normalization and discretization were completed before using the RST. In step three, the second level feature 

selection procedure was carried out using the Information Gain (IG) filter approach. Following completion of 

all of these, the classification process began. It was carried out in two stages, with KNN being applied initially 

and the output being used as an input for neural networks.  

Jongsuebsuk et al. [44] developed an IDS for classifying network attack data using a fuzzy rule 

algorithm and a genetic algorithm on the KDD99 dataset in addition to the researchers' own dataset. The results 

showed that the developed IDS can accurately identify network threats in real time with low false alarm rate 

and high detection speed. Patel et al. [3] conducted a review of data mining approaches, including K-Nearest 

Neighbors (KNN), Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Tree (DT), 

and Naive Bayes (NB). The researchers went on to discuss the benefits and drawbacks of the algorithms. 

Although the dataset statistics for this study were not disclosed, all of the implemented algorithms performed 

poorly. However, the evaluation results led the researchers to the conclusion that combining multiple 

algorithms could potentially mitigate their disadvantages because different algorithms have varying 

perspectives on the situation and improve system performance. Vinayakumar et al. [45] proposed a robust 

intelligent malware detection using deep learning. First, the study uses several datasets to compare the 

effectiveness of deep learning and standard machine learning architectures for malware detection. Second, the 

datasets used to train and evaluate the machine learning model are free of any bias thanks to the study. Thirdly, 

the research suggests a brand-new method of picture processing that provides the best settings for deep learning 

architectures and machine learning algorithms to produce an efficient zero-day malware detection model. The 

suggested deep learning architectures outperform traditional machine learning methods, according to a 

thorough comparison analysis of their model. In a large data setting, the study's primary contribution is the 

integration of deep learning and visualization architectures enabling hybrid approaches based on image 

processing, static, and dynamic processes.  

Mahindru and Sangal [46] proposes a framework for android malware detection using machine 

learning techniques. The proposed framework uses its dynamic analysis to find viruses in Android apps. The 

study trained the suggested framework by choosing features obtained by applying feature selection algorithms 

in order to detect malware from real-world apps. A model was constructed using the chosen features while 

taking various machine learning algorithms into account. More than 500,000 Android apps were subjected to 

experimental investigation in this study. The outcome showed that the suggested model outperformed similar 

techniques for malware detection on practical applications. Baek et al. [47] proposed a two-stage hybrid 

malware detection using deep learning in internet of things environment. In the first step, opcode is retrieved 

via static analysis, and harmful files are identified using a bidirectional long short-term memory model on the 

information that has been extracted. A dynamic analysis of files categorized as innocuous in a nested virtual 

environment is part of the second stage. Convolutional neural networks were utilized to detect malwars after 

information on behavior and process memory was extracted from the behavior log based on system 

modifications. 

Bakır and Bakır [48] proposes a malware detection using auto-encoder based feature extractor and 

machine learning algorithms. The study suggests using a brand-new autoencoder-based model called 

DroidEncoder to categorize Android malware apps. An image-based Android app dataset with 3000 malicious 

and 3000 benign apps was employed in the study. Additionally, three distinct auto-encoders—ANN-based, 

CNN-based, and VGG19-based—were used in the study to extract features from the malware dataset that was 

displayed. Three separate feature extraction experiments were carried out in the study in order to train several 

machines learning algorithms, including support vector machines, k-nearest neighbors, decision trees, 

additional trees, LightGBM, XGBoost, Random Forest, and linear regression. The outcomes demonstrated that 

the suggested technique for malware identification performed better than other comparable machine learning 

techniques. Khan et al. [49] proposes a Digital DNA Sequencing engine for ransomware detection using 

machine learning. The study evaluated the suggested approach's effectiveness using 582 ransomware and 942 

benign cases, evaluating performance according to the terms of accuracy, recall, f-measure, and precision. The 

findings demonstrated that the suggested strategy outperformed alternative techniques for ransomware 

detection. 

Ciaramella et al. [50] proposed an explainable ransomware detection with deep learning techniques. 

An openly accessible dataset was used to evaluate the proposed deep learning model for ransomware detection. 

When the suggested model was compared to other comparable techniques, the findings demonstrated improved 

accuracy for malware identification during the training and test phases across a dataset of more than 15,000 

components. Additionally, the research took advantage of the Gradient-weighted Class Activation Mapping in 

the created technique to raise the malware detection classification accuracy. Almazroi and Ayub [51] proposes 

a deep learning hybridization for improved malware detection in smart Internet of Things (IoT) environment. 

The study presented a unique Feed Forward Neural Network Framework (BEFNet) for Internet of Things 

scenarios, based on BERT. Eight datasets, each representing a distinct malware type, were used to evaluate the 

proposed system using different modules. Additionally, the Spotted Hyena Optimizer (SO) was used to 

optimize the suggested technique, demonstrating its flexibility in handling various malware data shapes. In 
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comparison to similar machine learning techniques, the comparative evaluation findings highlight the superior 

performance of the suggested strategy for malware detection in IoT environments.  

Brown et al. [52] proposes an automated machine learning (AutoML) for deep learning-based 

malware detection. The research offered a thorough examination and practical advice on applying AutoML to 

the identification of online and static malware. In the case of static, the suggested approach was examined 

using two popular malware datasets: SOREL-20M, which was used to show the method's effectiveness on big 

datasets, and EMBER-2018, a smaller dataset that was deliberately chosen to impede the performance of 

machine learning models. The study also demonstrated how adjusting the parameters of the neural architecture 

search (NAS) method can lead to the identification of a malware detection model that is more ideal for use 

with these static analysis datasets. Additionally, the study showed that AutoML performs well when used with 

Convolutional Neural Networks (CNNs) for cloud services in cases including online virus detection. The study 

used a newly produced online malware dataset, with and without other programs running in the background 

during malware execution, to compare the proposed AutoML technique to six current state-of-the-art CNNs. 

The outcomes shown that the suggested AutoML technique outperformed the most advanced CNNs with 

minimal overhead in terms of architecture discovery. Overall, the test findings demonstrated that AutoML-

based static and online malware detection models perform as well as or better than cutting-edge malware 

detection models. 

Talukder et al. [53] suggested a hybrid ML model for NIDS. The goal of the suggested approach is 

based on how current IDS fall short in addressing difficulties with low detection accuracy and processing 

enormous amounts of data for attack detection. As a result, the study suggested a hybrid model that combines 

ML and DL techniques in order to create a trustworthy and accurate IDS. Five stages make up the suggested 

paradigm. The first stage handled missing values and encoded attribute values as part of data preprocessing. 

SMOTE was used in the second step to solve the problem of data imbalance in the datasets. The most pertinent 

features from the datasets were extracted in the third stage using the XGBoost algorithm. The processed dataset 

is split into a training and testing set in the fourth stage using K-fold cross validation. After choosing the best 

attributes, ML and DL algorithms were used to create the models. The effectiveness of other ML algorithms, 

including RF, DT, KNN, MLP, Convolution Neural Network (CNN), and Artificial Neural Network (ANN), 

for detecting network intrusion was compared with the performance of the created ML and DL techniques. 

When compared to existing models, the suggested strategy provides excellent detection accuracy on two 

datasets without any overfitting, according to the results. The proposed technique was not tested on modern 

datasets and does not provide a structured taxonomy for intrusion classification. Table 1 show the highlights 

of related studies. 

Table 1. Highlights of related studies 

S/N Author/Year Technique Advantage Disadvantage 

1. Khan et al. [19] 
Recurrent Neural Network and 

a Convolutional Neural 

Network 

Provides excellent detection 

accuracy 
Long training time 

2. Thaseen et al. [20] 
Correlation-based Artificial 

Neural Network 
Better detection accuracy 

Long training time and require 

a lot of training data 

3. 
Salih and 

Abdulazeez [21] 

Particle Swarm Optimization 

and Random Forest 
Detection speed and accurate 

Slow and not suitable for real-

time detections 

4. 
Choudhury and 

Bhowal [22] 
Random Forest and BayesNet 

Better classification 

performances 
Long training time 

5. Mahfouz et al. [23] Machine learning techniques 
Reduce class imbalance and 

increase classification rate 
Overfitting problem 

6. 
Kajal and Nandal 

[4] 

Artificial Neural Network and 

Support Vector Machine 
(ANN-SVM) 

High precision value Long training time 

7. Waskle et al. [1] 
Random forest classifier and 

principal component analysis 

Reduced feature dimension 

and accurate classification 

It is not robust against data 

imbalance problem 

8. 
Kasongo and Sun 

[24] 
Wrapper-based Feed-forward 

Deep Neural Network 
Better detection accuracy 

High training time and 
overfitting problem 

9. Zhou et al. [25] 

Correlation-based Feature 

Selection- Bat Algorithm (CFS-
BA) and Ensemble method 

Minimizes the amount of 

processing time and data 
imbalance problem 

Inability to detect rare network 

attacks 

10. 

Halimaa and 

Sundarakantham 
[26] 

Naive Bayes and Support 

Vector Machine (SVM) 
Better detection accuracy 

It is not suitable for large 

datasets and inability to detect 
rare network attacks 

11. Bhati and Rai [27] Fine Gaussian SVM variation 
Better detection accuracy and 

low error rate 
Long training time 

12. 
Bindra and Sood 

[28] 
Random Forest 

Provides high detection 
accuracy 

Slow and ineffective for real-
time predictions 

13. Chu et al. [29] SVM High detection speed 
Slight accuracy loss based on 

their feature selection method 

14. Kim et al. [30] 
Convolutional Neural Network 

(CNN) 
Better classification rate Data imbalance problem 
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15. Patgiri et al. [31] 
Random Forest and Support 

Vector Machine 

Provides high detection 

accuracy 

High time and computational 

cost 

16. Taher et al. [32] 
SVM and artificial neural 

networks 
Provides high detection 

accuracy 
High time and computational 

cost 

17. Xu et al. [33] Weighted KNN Increased efficiency Slight accuracy loss 

18. Yulianto et al. [34] AdaBoost classifier 
Provides better detection 

accuracy 

It is not suitable for noisy data 

and sensitive to outliers 

19. 
Haripriya and Jabba 

[36] 
Machine learning algorithms 

Provide a review contribution 

to the field of intrusion 
detection systems 

It is very difficult to train the 
algorithms when certain 

amount of traffic data is not 

available 

20. Ashraf et al. [37] Random Forest Algorithm 
Provides good detection 

accuracy 

Slow and ineffective for real-

time predictions 

21. Chiba et al. [38] 
Back Propagation Neural 

Network 

Provides excellent detection 

accuracy 

High time and computational 

cost 

22. 
Hajisalem and 

Babaie [39] 

Artificial fish swarms (AFS) 

and artificial bee colonies 

(ABC) 

High detection rate and low 
false positive rate 

 

High time and computational 

cost 

23. Al-yaseen et al. [40] 
Support vector machine and 

Extreme learning 
Improved accuracy and faster 

training times 
Extended testing period 

24. Lin et al. [41] 
Cluster center and nearest 

neighbor (CANN) approach 

Effective detection rate and 

false alarm 

Required extra computations. It 

failed to identify R2L and U2R 
attacks 

25. 
Maharaj and 

Khanna [42] 
Data mining approach 

Effective performance and 

low false alarm rates 
High training time 

26. Ghosh et al. [43] 
K-Nearest Neighbors and 

Neural Networks (KNN-NN) 
Good classification result 

High computation cost and 
requires high memory storage 

27. 
Jongsuebsuk et al. 

[44] 

Fuzzy Genetic Algorithm 

 

Low false alarm rate and 

high detection 
Time-consuming 

28. Patel et al. [3] Data mining approach 
Provide review of data 

mining approaches 

Poor performances of 
implemented methods and 

dataset statistics were not 

disclosed 

29. 
Vinayakumar et al. 

[45] 
Deep learning High detection accuracy Lack of Interpretability 

30. 
Mahindru and 

Sangal [46] 
Machine learning techniques High detection rate Model stability issue 

31. Baek et al. [47] Hybrid deep learning 
Provides excellent detection 

accuracy 

Require a lot of training data 

for effective learning 

32. 
Bakır and Bakır 

[48] 

Auto-encoder based feature 

extractor 

Provides excellent detection 

accuracy 
Prone to overfitting 

33. Khan et al. [49] Active Learning Algorithm Good detection performance 
It cannot deal with limited 

annotated data 
34. Ciaramella et al. [50] Deep learning techniques Good computational efficiency Lack of feature selection method 

35. 
Almazroi and Ayub 

[51] 

BERT-based Feed Forward Neural 

Network 
High detection accuracy High computational time 

36. Brown et al. [52] Convolutional Neural-Networks High detection accuracy High computational time 

37. Talukder et al. [53] Hybrid ML method 
Provides excellent detection 

accuracy 
It was not tested on modern datasets 

3. Materials and method 

In this study, a Hybrid Network Intrusion Detection Framework using Neural Network-Based 

Decision Tree (HNIDF-NN-DT) model was developed. The developed model is divided into four modules: 

Data collection, data preprocessing, feature selection and detection. The data collection module adapted the 

NSL-KDD dataset for implementation due to its modern attack representation. The data preprocessing module 

convert the adapted dataset into the format suitable for machine learning. The data preprocessing module also 

used the random undersampling technique to reduce data imbalance problem. The feature selection module 

consists of a hybrid feature selection method. A hybrid feature selection method was used to select the most 

important features from the adapted intrusion dataset. The first step of the hybrid feature selection method 

utilized forward selection to choose feature subsets. The forward selection start from an empty set, and 

sequentially add features from the full feature set with an already selected features that result in the highest 

accuracy of the classifier. The second step used backward elimination method to select feature subsets. The 

backward elimination starts from the full set, and sequentially remove the feature that results in the smallest 

decrease in the accuracy of the classifier. Two intermediate feature subsets are formed from the first and second 

steps with least number of features. The third step combines the two intermediate feature subsets into a pool 

and used Genetic search method to select the best features from the pool of feature subset. The genetic search 

algorithm evaluates the merits of each attribute and returns selected features with highest fitness value. The 

rule evaluation phase of the third step check if two feature subsets have the same fitness value, the rule-based 

engine returns the feature subset with least number of subset features. The detection module involves a neural 

network-based decision tree classifier for the automatic generation of rules for intrusion detection. The selected 

features from the feature selection module serve as input into a neural network-based decision tree classifier to 

generate the rules for the automatic design of NIDS. Each node of the decision tree represents a neural network 

processing unit. The node partitioning entropy function of the decision tree was replaced by the sigmoid 
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function of the neural network. The selected features from the feature selection module serve as input into a 

neural network-based decision tree classifier to generate the rules for the automatic design of NIDS and 

accurate prediction of attacks. The decision tree provides the detection rules for the interpretability of detection 

decisions and the neural network provide the accuracy needed for attack detection. Figure 1 shows the 

architecture of the developed Hybrid Network Intrusion Detection Framework using Neural Network-Based 

Decision Tree model. 

 

Figure 1: Architecture of the developed architecture of the developed Hybrid Network Intrusion Detection Framework 

using Neural Network-Based Decision Tree mode 

3.1. Dataset collection module 

The NSL-KDD dataset was adopted for implementation due to its effectiveness for modern intrusion detection 

system [54]. The dataset consists of 41 attributes that are classified as either normal or anomalous. Table 2 

shows the attack categories in the dataset. 

Table 2. List of Attack Category 

Attack type Category 

Back, Land, Neptune, Pod, Smurf, Teardrop, Mailbomb, Apache2, 

Processtable, Udpstorm, Worm 
DoS 

Ipsweep, Nmap, Portsweep, Satan, Mscan , Saint Probing 

Ftp_Write, Guess_Passwd, Imap, Multihop, Phf, Spy, Warezclient, 

Warezmaster, Warezmaster, Sendmail, Named, Snmpgetattack, 

Snmpguess, Xlock, Xsnoop, Httptunnel 

R2L 

Buffer_Overflow, Loadmodule, Perl, Rootkit, Ps, Sqlattack, Xterm U2R 

 

3.2. Data preprocessing module 

The data preprocessing module also used the random undersampling technique to reduce data 

imbalance problem. Random Under-sampling was used to shift the class distribution of the dataset in order to 

prevent model bias. Using the random undersampling technique, instances from the majority class are chosen 

at random and then removed from the training dataset. Additionally, datasets with an uneven distribution of 

observations for the target class—that is, one class label having a very high number of observations while the 

other has a very low number of observations—are referred to as imbalanced data. Random under-sampling 

technique is used regularize the minority or majority class. In order to match the majority class with the 

minority class, rows from the majority class can be randomly removed using this technique. A balanced dataset 

for both majority and minority classes can be obtained after sampling the data. Given that both classes have an 

equivalent number of records in the dataset, it follows that the classifier will assign equal weight to each class. 

 

3.3 Feature selection 

In order to choose the most important characteristics from the preprocessed dataset, the feature selection 

module employed a hybrid feature selection technique: 

• Forward selection: Beginning with an empty set (Equation 1), sequentially adds features from the 

whole feature set 𝑋+ that results in the greatest accuracy J(𝑌𝑘+ 𝑋+) when combined with the features 

𝑌𝑘 that have already been chosen (Equation 2). 

𝑌𝑜 = {∅}                                                                                                                             (1) 
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𝑋+ = argmax
𝑋∉𝑌𝑘

[𝐽(𝑌𝑘 +  𝑋)]                                                                                            (2) 

• Backward elimination: Beginning with the full set (Equation 3), sequentially eliminates the 

characteristic 𝑋− that causes the accuracy classifier to decrease the least J(𝑌𝑘 − 𝑋) as in Equation 4.  

𝑌𝑜 = 𝑋                                                                                                                                  (3) 

𝑋− = argmax
𝑋∉𝑌𝑘

[𝐽(𝑌𝑘 −  𝑋)]                                                                                             (4) 

• Genetic search: Genetic search is a search motivated by natural evolution. This genetic search 

employs a fitness function, which is a linear combination of an accuracy term and a simplicity term. 

   𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) =
3

4
𝐴 +

1

4
(1 − 

𝑆+𝐹

2
)                                                                                  (5)             

where X is a feature subset, A is the average cross-validation accuracy of the classifier, S is the number 

of instances or training samples, and F is the number of subset features.  

• Rule evaluation: The rule-based engine returns a feature subset (𝑉𝑖) with fewer features (𝑋𝐹) if there 

are many feature subsets (𝐹>) with equivalent fitness values; otherwise, it returns the feature subset 

with the greatest fitness value (𝐹ℎ𝑖) to the basic classifier as in (6). 

𝑅 = {
𝑉𝑖 , 𝑖𝑓 𝑉𝑖 ∈ 𝐹>⋂𝑋𝐹       

𝑉𝑖 , 𝑖𝑓𝐹ℎ𝑖⋂∅                  
                                                                                           (6) 

3.4 Detection 

The detection module involves a neural network-based decision tree classifier for the automatic 

generation of rules for intrusion detection. The selected features from the feature selection module serve as 

input into a neural network-based decision tree classifier to generate the rules for the automatic design of NIDS. 

Each node of the decision tree represents a neural network processing unit. The node partitioning entropy 

function of the decision tree was replaced by the sigmoid function of the neural network. The selected features 

from the feature selection module serve as input into a neural network-based decision tree classifier to generate 

the rules for the automatic design of NIDS and accurate prediction of attacks. The neural network-based 

decision tree provides the detection rules for the interpretability of detection decisions and the neural network 

provide the accuracy needed for attack detection. The neural network-based decision tree was applied to the 

chosen features in order to determine the rules for the automatic creation of network intrusion detection system. 

The neural network-based decision tree technique was used to extract the rules that separate normal traffic 

from intrusive traffic using the adapted dataset. A neural network-based decision tree can be expressed as a 

recursive partition of the instance space. In the developed neural network-based decision tree, each internal 

node represents a neural network processing unit. The node partitioning entropy function of the decision tree 

was replaced by the sigmoid function of the neural network to split the instance space into two or more sub-

spaces according to the sigmoid function of the input attributes values. The measure for selecting the best split 

based on the degree to which instances belong more to one class than the others is given by Equation 7. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑡) =  − ∑    𝑝(𝑖|𝑡) 𝑙𝑜𝑔2 𝑝(𝑖|𝑡)  𝑐−1
𝑖=0                                                              (7)    

where:  

c is the number of classes while 𝑝(𝑖|𝑡) denotes the fraction of instances belonging to class i at a given node t. 

In order to represent each node of the decision tree as a neural network processing unit, the following 

procedures are defined: First, there may be several inputs 𝑥𝑖, i = 1, …, m in the nodes of the decision tree. Each 

input 𝑥𝑖 is multiplied by the corresponding weight 𝑤𝑘𝑖  where k is the index of a given neuron in a neural 

network. The weighted sum of products 𝑥𝑖𝑤𝑘𝑖, for i = 1, …, m is usually denoted as net in the neural network 

literature: 

𝑛𝑒𝑡𝑘 = 𝑥𝑖𝑤𝑘𝑖 + 𝑏𝑘                                                                                                         (8) 
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Finally, a neural network computes the output 𝑦𝑘  as a certain function of netk value as in (9) and the 

modified entropy function for selecting the best split based on the degree to which instances belong more to 

one class than the others using the sigmoid function is given by Equation 10.  

𝑦𝑘 =
1

(1 + 𝑒−𝑛𝑒𝑡)
                                                                                                    (9) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑡) =  − ∑   1/(1 + 𝑒−𝑛𝑒𝑡) 𝑙𝑜𝑔2[1/(1 + 𝑒−𝑛𝑒𝑡)]                        (10)

𝑐

𝑖=1

 

where: 1/(1 + 𝑒−𝑛𝑒𝑡) denotes the probability of randomly selecting an instance in class i.  The splitting 

criterion used by the J48 decision tree algorithm is known as gain ratio to determine the goodness of a split. 

The criterion is defined as in Equation 11. 

𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐷)  − ∑
|𝐷𝑣|

|𝐷|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦

𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

(𝐷𝑣)       (11) 

where:𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) denote the set of all possible values for attribute A and 𝐷𝑣  denote the subset of dataset D 

having value v for attribute A. 

3.5 Algorithms 

Algorithm 1 depict the hybrid feature selection method. The hybrid feature selection technique uses 

Forward Selection, Backward Elimination, Genetic Search, and Rule Evaluation techniques. A hybrid feature 

selection technique was applied to the preprocessed dataset to determine which features were most crucial. The 

first step of the hybrid feature selection technique employed forward selection to choose feature subsets, while 

the second step used backward elimination. The forward selection process begins with an empty set and 

sequentially adds features from the whole feature set with features that have already been chosen to provide 

the classifier's greatest accuracy. Backward elimination starts with the entire set and sequentially eliminates 

the characteristic that causes the accuracy classifier to decrease the least. The first and the second steps 

produced two intermediate feature subsets with least number of features. In the third step, the two intermediate 

feature subsets are combined into a pool, and the best features are chosen from the pool of feature subsets using 

the genetic search approach. The genetic search algorithm evaluates the performance of each attribute and 

returns selected features with highest performance. The rule evaluation phase was used to return the feature 

subset with least number of subset features if there exist two feature subsets that have the same fitness value. 

Genetic search method was used to search the final best features from the pool of feature subsets. 
ALGORITHM 1: Hybrid feature selection 

INPUT: Training Dataset X{𝑥1, 𝑥2, … . , 𝑥𝑘 | xi ∈ C}  

OUTPUT: Xr //reduced features 

Process: 

1. BEGIN 

2. 𝑌 ← X(𝑥1, 𝑥2, … . , 𝑥𝑘 )  
3. 𝑌𝑜 = {∅}  //forward selection 

4. 𝑋+ = argmax
𝑋∉𝑌𝑘

[𝐽(𝑌𝑘 +  𝑋)] 

5. 𝑌𝑘+1 = 𝑌𝑘 + 𝑋+, 𝑘 = 𝑘 + 1 //update 

6. 𝑌𝑜 = 𝑋  // Backward elimination 

7. 𝑋− = argmax
𝑋∉𝑌𝑘

[𝐽(𝑌𝑘 −  𝑋)] 

8. 𝑌𝑘+1 = 𝑌𝑘 − 𝑋−; 𝑘 = 𝑘 + 1  //update 

9. P = 𝑋+ + 𝑋− // feature pool 

10. BEGIN 

11.      Generate random population n from P 

12.      Np ← m x n 
13.      WHILE Np is not empty do 

14.             P1 ← TournamentSelection (Np) 

15.             P2 ← TournamentSelection (Np - P1) 
16.             Select a random number r ⱻ 0 ≥ r < 1 

17.             IF ( r < p) do // if r is less than the crossover rate 

18.                   crossover(P1, P2) 

19.              ELSE return P1 , P2 

20.                   mutation(P1 , P2)  

21.                   k ← P1 , P2 

22.                   Return k ∈ P for which f(x) is highest. 

23.             END-IF 

24.       END WHILE 

25.       IF two feature subsets have the same fitness value 
26.            //return the feature subset with least number of subset features 

27.            return Xr     

28.       END-IF 
29. END 
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Algorithm 2 depict the algorithm for finding the best split attribute of the decision tree using the 

sigmoid based entropy function. The algorithm started by initializing weights for all the decision tree nodes. 

The algorithm checks if all instances in the dataset X have same class c and label the decision tree accordingly. 

The algorithm then checks if no attribute has positive entropy based on the sigmoid function, and assign the 

decision tree the most common class in the dataset. The algorithm checks for attribute with the highest entropy 

based on the sigmoid function and label the decision tree with such attribute and return the resultant tree. 
 

ALGORITHM 2: find_best_split 

 
INPUT: Dataset X, Feature F 
OUTPUT: Tree T 

Process 

1. BEGIN 

2. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑡) =  − ∑    𝑝(𝑖|𝑡) 𝑙𝑜𝑔2 𝑝(𝑖|𝑡)  𝑐−1
𝑖=0  

3. 𝑛𝑒𝑡𝑘 = 𝑥𝑖𝑤𝑘𝑖 + 𝑏𝑘 

4. 𝑦𝑘 =
1

(1+𝑒−𝑛𝑒𝑡)
 

5. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑡) =  − ∑   1/(1 + 𝑒−𝑛𝑒𝑡) 𝑙𝑜𝑔2[1/(1 + 𝑒−𝑛𝑒𝑡)]   𝑐
𝑖=1  

6. 𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐷)  − ∑
|𝐷𝑣|

|𝐷|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) (𝐷𝑣) 

7. 𝑊 = 𝑤0 

8. For 𝐹 = 0 to 𝐹 − 2 do 

9.     if all instances in X have same class c 

10.        Label(T) =c; Return T 

11.     If F=∅ or no attribute has positive entropy 

12.        Label (T) = most common class in X; return T 

13.     F←attribute with highest entropy 

14.     Label(T) = F 
15. End For 

16. For each f of F 

17.    𝑋𝑓 ←instances in X with F=f 

18.    If 𝑋𝑓 is empty 

19.       Let 𝑇𝑓 be a new tree 

20.       Label (𝑇𝑓)=most common class in X 

21.     Else 

22.         𝑇𝑓=(𝑋𝑓, F-{F}) 

23.      Add a branch from T to 𝑇𝑓 with label f 

24.      Return T 

25. End For each 

End 

Algorithm 3 depict the Neural Network-Based Decision Tree (NN-DT). This algorithm builds the J48 

decision tree based on neural network. The J48 decision tree builds a tree of rules during the training phase to 

appropriately separate the network traffics into normal or attack classes. During testing phase, the tree of rules 

is generated for the automatic construction of rules to classify the input features as normal or attack.  The 

algorithm works by recursively selecting the best attribute to split the data (Step 9) and expanding the leaf 

nodes of the tree (Step 13 and 14) until the stopping criteria is met (Step 3). The createNode() function extends 

the decision tree by creating a new node. A node in the decision tree has either a test condition, denoted as 

node.test_cond, or a class label, denoted as node.label. The Classify () function (Step 5) determines the class 

label to be assigned to the leaf node. For each leaf node t, let p(i|t) denote the fraction of training data from 

class i associated with the node t. the leaf node is assigned to the class that has the majority number of training 

data. The find_best_split() function determines which attribute should be selected as the test condition for 

splitting the training records. The stopping_cond() function is used to terminate the tree-growing process by 

testing whether all the instances have either the same class label or the same attribute values. 

ALGORITHM 3: Neural Network-Based Decision Tree (NN-DT) 

INPUT: Attribute_set F{ f1,f2,…,fn }, Training Dataset Xr{x1,x2,…,xn | xi ∈ C}, SplitRatio S 

OUTPUT: Pruned Decision Tree 

Process: 

1. BEGIN 

2. // BuildTreeClassifier 

3. IF stopping_cond(X,F) = true THEN 

4.       leaf = createNode() 

5.       leaf.label = Classify(X) 

6.       return leaf 

7. ELSE 

8.       root = createNode() 

9.       root.test_cond = find_best_split(X,F) 

10.       let V = {v|v is a possible outcome of root.test_cond} 
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11.       FOR EACH v ∈ V DO 

12.             Xv = {x |root.test_cond(x) = v and x ∈ X} 

13.             child = buildTreeClassifier(X,F) 

14.             add child as descendant of root and label the edge as v 

15.       END FOR 

16. END IF 

17. Return root 

18. // Prunning Algorithm 

19. GrowingSet G ← set of training data used to build the tree 

20. PruningSet P ← set of training data for validating the tree 

21. P,G  = splitExamples(S,X,F) //split training data 

22. tree  = TreeClassifier(G,F) 

23. WHILE(true) 

24.        prunedTree =  bestSimplification(tree,P) //pruning process 

25.        IF (accuracy(prunedTree,P) < accuracy(tree,P)) 

26.           Break; 

27.           tree = prunedTree 

28.        END IF 

29. END WHILE 

30. Return Pruned Decision Tree 

END 

4. Results  

4.1 Implementation 

The implementation of the developed Hybrid Network Intrusion Detection Framework using Neural 

Network-Based Decision Tree (HNIDF-NN-DT) model was carried out with Java programming language due 

to its support for pure object-oriented design, flexibility, portability and the rich graphical interface. NetBean 

was used as the Integrated Development Environment (IDE). Notepad++ was used to edit the dataset. WEKA 

API was used as the java plug-in for the used algorithms. Microsoft Excel was used for chart development. 

 

4.2 Feature extraction 

The developed hybrid feature selection method selected 6 features as shown in the Table 3 below. The 

essence of the feature selection is to extract the most important features from the full dataset that will enhance 

detection accuracy and reduce computational time. The table show the number of features selected, the serial 

number of features selected and their feature names. 

4.3 Neural Network-Based Decision Tree 

The result of this neural network-based decision tree can be described as set of rules, encapsulating 

the attributes in the selected features of the adapted dataset. Figure 2 show the rules representation of the neural 

network-based decision tree. The developed neural network-based decision tree model generated 101 leaves of 

rules for the classification of network intrusions. The neural network-based decision tree algorithm is a 

predictive data mining technique used in the prediction of network intrusions. It uses a predictive model to 

transform from item of observations (represented by branches) to rules about the target value of the item 

(represented in the leaves). Each node of the decision tree represents a neural network processing unit for 

accurate prediction and for interpretability of classification decisions. 

The justification for the neural network-based decision tree is to provide automatic rules generation for the 

construction of NIDS. Another justification for the use of the neural network-based decision tree is for the 

decision tree to provide the detection rules for the interpretability of detection decisions and the neural network 

to provide the accuracy needed for attack detection. The developed neural network-based decision tree enables 

the resultant classification tree to be easier to understand and interpret. A predictive neural network-based 

decision tree was developed using J48 and neural network weka API in Java program. A 5-fold cross-validation 

was used to avoid overfitting and further prevent dataset imbalance problem. 

 
Table 3: Selected features 

No of 
features 

selected 

Feature 

selected 
Feature name 

6 4,5,6,12,26,30 
flag, src_bytes, dst_bytes, 
logged_in, srv_serror_rate, 

diff_srv_rate 
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Figure 2: A snippet of the rules for the neural network-based decision tree. 

 

Table 4 show the rules extracted from the leaves of the neural network-based decision tree generated 

in Figure 2. A total of 101 rules were extracted from the leaves of the generated neural network-based decision 

tree model for the prediction of anomaly or normal. For instance, rule 1 in Table 4 can be interpreted as “If 

src_bytes <= 28 && diff_srv_rate <= 0 && flag = OTH && srv_serror_rate <= 0.03 THEN put class in 

anomaly”. This means if src_bytes attribute <= 28 and diff_srv_rate attribute <= 0 and flag attribute = OTH 

and srv_serror_rate attribute <= 0.03, then classify network traffic as an anomaly class for the development of 

network intrusion detection system. Similarly, rule 2 in Table 4 can be interpreted as “If srv_serror_rate > 0.03 

THEN put class in normal”. This means that if the srv_serror_rate attribute > 0.03 then classify network traffic 

as normal class. Table 4 shows 24 rules out of the 101 rules generated due to space limitation.  

 

4.4 Performance metrics 

The developed Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision 

Tree model for network intrusion detection system was evaluated and compared with other related machine 

learning methods using the evaluation metrics listed below. 

• True positive rate (TP): The number of cases that were appropriately categorized in the typical class 

is shown here. This is indicated in (12).  

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                      (12) 

• False positive rate (FP): These are the instances that were wrongly assigned to the typical class. It is 

indicated in (13). 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                                                      (13) 

• Precision: This serves as a measure of the accuracy, assuming that a particular class that was predicted 

to be positive truly is positive. It is indicated in (14). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                         (14) 

• Recall: This is an indicator of how many labelled occurrences a prediction model successfully 

recognizes, as shown in (15). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                               (15) 

• F-measure: This represents the harmonic mean of the precision and recall based on a particular 

threshold. It is employed to evaluate the quality of the classification, as suggested in (16). 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                                                       (16) 

• Accuracy: This is the proportion of instances that were correctly categorized over all instances. It is 

indicated in (17). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
                                                                                (17) 
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Table 4: Sample Leaves of the neural network-based decision tree 

4.5 Results 

Table 5 show the comparison of the developed Hybrid Network Intrusion Detection Framework using Neural 

Network-Based Decision Tree (HNIDF-NN-DT) model for network intrusion detection system with other 

existing Machine Learning (ML) algorithms using the full dataset. Most of the ML algorithms on intrusion 

detection using the full dataset obtained F1-score of at least 73.03% classification rates. The F1-score of 

HNIDF-NN-DT on the full dataset is better with 98.56% compared to Multilayer Perceptron with the closest 

score of 94.79%. The results suggest Random Forest as the least ML algorithm for the classification of 

intrusions with F1-score of 73.03%. The outcomes demonstrated that the optimum method for network 

intrusion detection is HNIDF-NN-DT while the worst network intrusion detection method is Random Forest 

across the evaluation metrics using the full dataset. The results showed that the developed HNIDF-NN-DT is 

an improvement over the other related methods with TP, FP, accuracy, precision, recall, and F1-score of 98.7, 

1.3, 98.42%, 98.54%, 98.56% and 98.56 respectively compared to the other related methods. Overall, the 

results demonstrated that the various ML methods on the full dataset for network intrusion detection performed 

well. 

Table 5: Performance comparison on full dataset 

Algorithm TP FP Accuracy Precision Recall F1 score 

C4.5 tree 97.5 2.5 95.78 94.43 92.63 93.23 

Decision Table 94.2 5.8 89.33 88.54 88.34 88.24 

Bagging 97.8 2.2 93.76 93.51 89.61 92.36 

KNN 97.7 2.3 89.57 86.53 85.76 86.34 

Logistic 93.9 6.1 94.32 94.53 89.53 93.33 

Naïve Bayes 90.3 9.7 77.36 69.53 75.24 75.34 

Bayesian Logistic 

Regression 
91.6 8.4 83.45 93.52 88.62 91.63 

Naïve Bayes 

Multinomial 
90.7 9.3 80.06 75.34 74.34 75.35 

Multilayer Perceptron 94.2 5.8 92.53 94.63 94.36 94.79 

Random forest 97.9 2.1 73.04 73.03 73.02 73.03 

HNIDF-NN-DT 98.7 1.3 98.42 98.54 98.56 98.56 

Table 6 show the comparison of the developed Hybrid Network Intrusion Detection Framework using 

Neural Network-Based Decision Tree model for network intrusion detection system with other existing 

machine learning algorithms using the reduced dataset. Most of the ML algorithms on intrusion detection using 

#No Rule 

1 If src_bytes <= 28 && diff_srv_rate <= 0 && flag = OTH && srv_serror_rate <= 0.03 THEN put class in 

anomaly 

2 If srv_serror_rate > 0.03 THEN put class in normal 

3 If flag = REJ THEN put class in normal 

4 If flag = RSTO && dst_bytes <= 1 THEN put class in normal 

5 If dst_bytes > 1 && dst_bytes <= 48 && logged_in = 0 THEN put class in normal 

6 If logged_in = 1 THEN put class in anomaly 

7 If dst_bytes > 48 THEN put class in anomaly 

8 If flag = RSTOS0 THEN put class in anomaly 

9 If flag = RSTR THEN put class in anomaly 

10 If flag = S0 && srv_serror_rate <= 0.55 THEN put class in normal 

11 If srv_serror_rate > 0.55 THEN put class in anomaly   

12 If flag = S1 THEN put class in normal 

13 If flag = S2 THEN put class in normal 

14 If flag = S3 THEN put class in normal 

15 If flag = SF && dst_bytes <= 3 && src_bytes <= 8 && src_bytes <= 7 && src_bytes <= 5 THEN put class 

in anomaly 

16 If src_bytes > 5 THEN put class in normal 

17 If src_bytes > 7 THEN put class in anomaly 

18 If src_bytes > 8 && src_bytes <= 17 THEN put class in normal 

19 If src_bytes > 17 && src_bytes <= 27 && src_bytes <= 18 THEN put class in anomaly 

20 If src_bytes > 18 && src_bytes <= 20 && src_bytes <= 19 THEN put class in normal 

21 If src_bytes > 19 THEN put class in anomaly 

22 If src_bytes > 20 THEN put class in normal 

23 If src_bytes > 27 THEN put class in anomaly 

24 If dst_bytes > 3 && dst_bytes <= 29200 && src_bytes <= 4 && logged_in = 0 THEN put class in normal 
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the reduced dataset obtained F1-score of at least 75.04% classification rates. The F1-score of HNIDF-NN-DT 

on the reduced dataset is better with 99.56% compared to Logistic with the closest score of 95.23%. The results 

suggest Random Forest as the least ML algorithm for the classification of intrusions with F1-score of 75.04%. 

The outcomes demonstrated that the optimum method for network intrusion detection is HNIDF-NN-DT while 

the worst network intrusion detection method is Random Forest across the evaluation metrics using the reduced 

dataset. The results showed that the developed HNIDF-NN-DT is an improvement over the other related 

methods with TP, FP, accuracy, precision, recall, and F1-score of 98.9, 1.2, 99.42%, 99.54%, 99.56%, and 

99.56% respectively compared to the other related methods. Overall, the results demonstrated that the various 

ML methods on the reduced dataset for network intrusion detection performed better when compared to their 

performances on the full dataset. 

Table 6: Performance comparison on reduced dataset 

Algorithm TP FP Accuracy Precision Recall F1 score 

C4.5 tree 98.4 1.6 96.68 95.43 93.63 94.23 

Decision Table 95.1 4.9 90.23 90.44 90.24 90.14 

Bagging 98.7 1.3 94.66 94.41 91.51 93.26 

KNN 98.6 1.4 91.47 88.43 87.66 88.24 

Logistic 94.8 5.2 95.22 95.43 91.43 95.23 

Naïve Bayes 92.2 7.8 79.26 77.43 77.24 77.24 

Bayesian Logistic 

Regression 
93.5 6.5 85.35 95.42 90.52 93.53 

Naïve Bayes 

Multinomial 
90.7 9.3 80.06 75.34 74.34 75.35 

Multilayer Perceptron 95.2 4.8 94.43 94.53 94.26 94.69 

Random forest 98.8 1.2 75.04 75.03 75.02 75.04 

HNIDF-NN-DT 98.9 1.2 99.42 99.54 99.56 99.56 

Figure 3 shows the graphical representation of the performance rate of each of the methods under 

comparison using the full dataset. The graph showed that the F1-score of the developed HNIDF-NN-DT on 

the full dataset is better with 98.56% compared to Multilayer Perceptron with the closest score of 94.79%. The 

graph also suggests Random Forest as the least ML algorithm for the classification of intrusions with F1-score 

of 73.03%. The outcomes demonstrated that the optimum method for network intrusion detection is HNIDF-

NN-DT while the worst network intrusion detection method is Random Forest across the evaluation metrics 

using the full dataset. The results showed that the developed HNIDF-NN-DT is an improvement over the other 

related methods with TP, FP, accuracy, precision, recall, and F1-score of 98.7, 1.3, 98.42%, 98.54%, 98.56% 

and 98.56 respectively. The graph showed that the developed model exhibited highest value of performances 

compared to the other models.   

 

 

 

 

 

 

Figure 3: Graph of performance comparison on full dataset 

 

Figure 4 shows the graphical representation of the performance rate of each of the methods under 

comparison using the reduced dataset. The graph showed that the F1-score of HNIDF-NN-DT on the reduced 

dataset is better with 99.56% compared to Logistic with the closest score of 95.23%. The graph also suggests 

Random Forest as the least ML algorithm for the classification of intrusions with F1-score of 75.04%. The 

graph showed that the optimum method for network intrusion detection is HNIDF-NN-DT while the worst 

network intrusion detection method is Random Forest across the evaluation metrics using the reduced dataset. 

The graph also showed that the developed HNIDF-NN-DT is an improvement over the other related methods 

with TP, FP, accuracy, precision, recall, and F1-score of 98.9, 1.2, 99.42%, 99.54%, 99.56%, and 99.56% 

respectively. Overall, the graph demonstrated that the various ML methods on the reduced dataset for network 

intrusion detection performed better when compared to their performances on the full dataset. 
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Figure 4: Graph of performance comparison on reduced dataset 

5. Conclusion 

The internet has presented new security challenges which deserve sophisticated mechanisms to avoid 

compromising confidentiality and integrity of data. The need to secure Internet applications on the global 

networks has become an important task due to the ever-increasing cybercrimes. A common technique for 

identifying intrusions in computer networks is the Network Intrusion Detection System (NIDS). Several NIDS 

techniques have been developed in the past, but these techniques are still limited in detection accuracy and 

error rate. Research has shown that one of the most considered strategies to achieve these sophisticated 

techniques is through the application of machine learning algorithms to the problem. Several IDSs have been 

proved to lack performance efficiency in detecting new attacks. Intruders find sophisticated and new means to 

intrude the privacy of a system. In this study, a Hybrid Network Intrusion Detection Framework using Neural 

Network-Based Decision Tree model for network intrusion detection system using the full and reduced datasets 

was developed. The study adapted a hybrid feature selection approach to choose the best attributes for NIDS. 

In order to automatically construct the rules for intrusion detection, the chosen attributes were trained with a 

Neural Network-Based Decision Tree model. The NSL-KDD dataset was used for experimentation and 

accuracy, precision, recall and F1-Score were used as metrics for the evaluation of the developed model. The 

results showed that the developed HNIDF-NN-DT based on the full dataset is an improvement over the other 

related methods with TP, FP, accuracy, precision, recall, and F1-score of 98.7, 1.3, 98.42%, 98.54%, 98.56% 

and 98.56 respectively. Similarly, the results showed that the developed HNIDF-NN-DT based on the reduced 

dataset is an improvement over the other related methods with TP, FP, accuracy, precision, recall, and F1-score 

of 98.9, 1.2, 99.42%, 99.54%, 99.56%, and 99.56% respectively. 
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