

 74

Journal homepage: https://ijas.uodiyala.edu.iq/index.php/IJAS/index ISSN: 3006- 5828

Iraqi Journal for Applied Science (IJAS)
Vol. 2, No. 1, March, 2025, pp. 47 - 39
ISSN: 3006-5828, DOI: 10.69923/er966f98

A Hybrid Network Intrusion Detection Framework using

Neural Network-Based Decision Tree Model

Lukman Adebayo Ogundele1, Femi Emmanuel Ayo2, Adekunle Mathew Adeleye3, Samuel Oluwatosin

Hassan4
1,2,4Department of Computer Sciences, Olabisi Onabanjo University, Ago-Iwoye, 120107, Ogun State, Nigeria

3Department of Computer Science, National Open University of Nigeria, Ibadan Nigeria

Article Info ABSTRACT

Article history:

Received: 28, 12, 2024

Revised: 10, 03, 2025

Accepted: 20, 03, 2025

Published: 30,03, 2025

Network Intrusion Detection System (NIDS) is a mechanism for detecting

anomaly in computer networks. Several NIDS techniques have been

developed in the past, but these techniques are still limited in detection

accuracy, error rate and in detecting new attacks. In this study, a Hybrid

Network Intrusion Detection Framework using Neural Network-Based

Decision Tree model for NIDS was developed. The developed model is

divided into four modules: Data collection, data preprocessing, feature

selection and detection. The data collection module adapted the NSL-KDD

dataset for implementation due to its modern attack representation. The data

preprocessing module used the random undersampling technique to reduce

data imbalance problem. The feature selection module consists of a hybrid

feature selection method to select the most important features from the

adapted intrusion dataset. The detection module involves a neural network-

based decision tree classifier for the automatic generation of rules for intrusion

detection. The results showed that the developed model based on the full

dataset is better than the other related methods with TP, FP, accuracy,

precision, recall, and F1-score of 98.7, 1.3, 98.42%, 98.54%, 98.56% and

98.56 respectively. Similarly, the results showed that the developed method

based on the reduced dataset is better than the other related methods with TP,

FP, accuracy, precision, recall, and F1-score of 98.9, 1.2, 99.42%, 99.54%,

99.56%, and 99.56% respectively.

Keywords:

Intrusion detection,
Feature selection,
Decision tree,
Neural network,
NSL-KDD dataset

This is an open access article under the CC BY-SA license.

Corresponding Author:

Femi Emmanuel Ayo

Department of Computer Sciences,

Olabisi Onabanjo University,

Ago-Iwoye, 120107,

Ogun State,

Nigeria.

Email:ayo.femi@oouagoiwoye.edu.ng

1. INTRODUCTION

The internet has developed into a natural phenomenon that is inextricably linked to people's everyday

lives, and a significant amount of data needs to be secured from various illicit actions [1]. Concentrated network

attacks are possible because attackers are always drawn to valuable information. According to [2], the main

goal of data security is to develop and apply protective computer models that are invulnerable to usage,

disclosure, interruption, alteration, and damage, as well as security breaches. Moreover, information security

reduces actions that could compromise the three main security objectives of integrity, availability, and

confidentiality [3]. Ensuring that the information sent is only accessible to those who should be in possession

of it is the goal of confidentiality. To guard against unwanted access, the information is encrypted. Making

sure that the data is not intercepted or manipulated is the focus of integrity. It guarantees that the sender's

intended message is received exactly by the recipient. Availability guarantees that a network or system resource

can be used and reached when needed by a system that has been given permission. A system's security is

jeopardized when there is a breach. The numerous repercussions of these attacks have led researchers to create

systems that can identify intrusions. The primary goal of creating intrusion detection systems (IDSs) is to

distinguish between malicious and benign attacks. Intrusion detection systems can be categorized based on

their environments [4] and their detection mechanisms [5]. Intrusion detection systems are further divided into

two categories based on the environments in which they operate: host-based IDS (HIDS) and network-based

https://ijas.uodiyala.edu.iq/index.php/IJAS/index
https://creativecommons.org/licenses/by-sa/4.0/
mailto:ayo.femi@oouagoiwoye.edu.ng

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

75

IDS (NIDS). The detection mechanism is further categorized into Anomaly-based Intrusion Detection Systems

(AIDS) and Signature-based Intrusion Detection Systems (SIDS). Researchers are particularly focused on

anomaly-based IDS since it has the advantage of being able to detect new patterns, whereas signature-based

IDS has limitations in this regard [6, 7, 8, 9]. Notwithstanding their creation, a variety of intrusion detection

systems remain open to attack [10]. In addition, despite the application of artificial intelligence and traditional

machine learning algorithms to increase detection accuracy of intrusion detection systems, current intrusion

detection systems continue to achieve poor performance [11, 12]. According to researchers, feature selection

should be used in the pre-processing stage of machine learning algorithms to exclude irrelevant features,

increase detection accuracy and reduce computational complexity. Feature selection can be categorized into

filter, wrapper, and embedded methods. Akyol and Atila [13] suggested that feature selection strategy works

well for developing and implementing intrusion detection systems with increased accuracy. The majority of

anomaly detection systems used feature selection methods on the intrusion datasets to achieve higher accuracy

and a lower false alarm rate [14]. The dataset is preprocessed to remove redundant features and noise, leaving

a smaller set of features for the development of a high-performance model for the prediction of attack types

with the base classifier.

This study however developed a Hybrid Network Intrusion Detection Framework using Neural Network-

Based Decision Tree (HNIDF-NN-DT) model. The developed model is a neural network-based decision tree

model that combine the high-level interpretability of decision tree with high decision-making accuracy of the

neural network. The developed model is divided into data collection, data preprocessing, feature selection, and

detection. The data collection module adapted the NSL-KDD dataset for implementation due to its modern

attack representation. The data preprocessing module convert the collected dataset into the format suitable for

machine learning algorithms. The data preprocessing module also used random undersampling method to

reduce data class imbalance problem. The feature selection module consists of a hybrid feature selection

method to select the most important features from the preprocessed dataset. The detection module involves a

neural network-based decision tree classifier for the automatic generation of rules for intrusion detection. Each

node of the decision tree represents a neural network processing unit. The node partitioning entropy function

of the decision tree was replaced by the sigmoid function of the neural network. The selected features from the

feature selection module serve as input into a neural network-based decision tree classifier to generate the rules

for the automatic design of NIDS and accurate prediction of attacks. The decision tree provides the detection

rules for the interpretability of detection decisions and the neural network provide the accuracy needed for

attack detection. The contribution of this study include: (1) The use of a hybrid feature selection method for

optimal feature selection. (2) The use of random under sampling method in the preprocessing phase to reduce

dataset imbalance problem. (3) The use of a neural network-based decision tree model for network intrusion

detection system to automatically generate the rules for intrusion detection. The neural network-based decision

tree is for the decision tree to provide the detection rules for the interpretability of detection decisions and the

neural network to provide the accuracy needed for attack detection. The rest of this study is organized as

follows: Section 2 includes related work. The materials and method are presented in section 3. The results and

discussion are presented in section 4. Section 5 conclude the work with a summary of the findings.

2. Literature review

2.1 Motivation of the work

The need to detect intrusions accurately grows daily as attackers keep getting sophisticated. The

motivation of this study is focused on developing an intrusion detection system capable enough to detect new

attacks and classify attacks accurately. Most of the past techniques for network intrusion detection cannot

detect new attacks and are limited in terms of detection accuracy and false alarm rates. The research and

implementation of advanced network intrusion detection techniques based on machine learning will contribute

to the understanding of network security and anomaly detection.

2.2 Feature selection

One of the problems machine learning algorithms confront is high dimensionality. These days, it's

typical to have datasets with a large number of fields or columns. Large datasets are typically employed in

intrusion detection systems, and employing machine learning techniques to train the system on datasets with

lots of features can take a lot of time, increase learning complexity, and have a negative effect on the system if

irrelevant characteristics are used. Thus, feature extraction or selection aids in eliminating extraneous features

or noise from the data, increasing the classification rate. The main distinction between feature selection and

extraction is that the former creates new features or columns based on preexisting features, sometimes

misinterpreting the data, while the latter selects features without altering the original data or creating new

features or columns to be used. Researchers have confirmed that feature selection is a critical and significant

phase in machine learning. Machine learning feature selection techniques are broadly divided into three

categories:

2.2.1 Filter method

Using the filter method, features are subjected to statistic measurements. A feature is then either

chosen or rejected based on the specified threshold. The Filter method's inability to take into account the base

classifier—that is, its independence from the classifier—and propensity to choose sizable feature subsets are

drawbacks. One advantage is its speed, as it doesn't necessitate communication with the classifier; another is

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

76

its generality, as it assesses the characteristics of the input. Some of the filter techniques employed to the dataset

for feature selection are Information Gain, Correlation-based, and Chi squared test.

2.2.2 Wrapper method

 Wrapper method accounts for the classifier. Because many feature combinations are examined, it depends

on the classifier and is typically computationally demanding. It assesses the accuracy of feature subsets.

Because there is interaction between the wrapper and the classifier, it has the benefit of reaching a high

accuracy. The lack of generality of the wrapper method is an additional drawback, in addition to its

computational complexity and sluggish execution speed. The subset of features will only be unique to the

classifier that is being evaluated.

2.2.3 Embedded method

Embedded method incorporates the advantages of both the wrapper and filter approaches by adding

feature associations and drastically reducing computational costs. Each time the training process is repeated

using iterative approaches, the features that contribute the most to the training for that iteration are carefully

extracted. Many subsets are produced from the dataset by the embedded approach. It selects features for the

model at random and tries to execute every possible combination. A subset of features will be selected and

added to the dataset for training based on the subset with the highest accuracy.

2.3 Neural network

A neural network is a highly connected and adaptive deep learning model. The network is a

hierarchical network structure made up of several vertices and interconnected edges. The vertices represent the

processing unit and the interconnection of edges between vertices denote the association between connected

vertices. At each iteration, the vertices broadcast faults backward as part of iterative learning, which increases

the accuracy of the network. The network employed weight adjustment to lessen the learning error by

constructing the vertices from attached weights. To control the network's output, a number of activation

functions are also utilized.

2.4 Decision tree (DT)

Alpaydin [15] defines a decision tree as a “hierarchical data structure implementing the divide-and-

conquer strategy”. It is a nonparametric technique that is suitable for both classification and regression

problems. The model is tree-like in architecture which can easily be interpreted. It learns by performing feature

selection, generating, and pruning trees. During training, the algorithm can select the most suitable features

and build child nodes from the root node. Decision tree classifiers that have been used are ID4, C4.5, and

CART, they have better accuracy for known intrusions but are not good at detecting unknown intrusions [16].

Ingre et al. [17] proposed a decision tree-based IDS for the NSL-KDD dataset. In the study, fourteen features

were selected from the dataset using the correlated feature selection (CSF) method. The overall accuracy was

83.7% and 90.3%. Azad and Jha [18] also proposed an intrusion detection system based on a C4.5 decision

tree on a KDD Cup 99 dataset and a high accuracy of 99.89% was achieved.

2.5 Related studies

Various researchers have proposed various methods for the detection of an intrusion based on data

mining techniques. Khan et al. [19] developed a hybrid deep learning ID framework that combines a recurrent

neural network (CRNN) and a convolutional neural network (CNN) to classify hostile attacks within the

network. In the HCRNNIDS, temporal features were caught by the recurrent neural network (RNN) to improve

the ID system's classification and accuracy, while native attributes were captured by the convolutional neural

network (CNN). The CIC-DS 2018 ID data collection was used in studies. The hybrid intrusion detection

system (HCRNNIDS) outperformed the ID approaches assessed by the researchers, with a detection rate of

97.7%, according to the results of its investigation. Thaseen et al. [20] developed an integrated ID system that

prioritizes features based only on the strongest correlation between the class outcome and the features

combined with Artificial Neural Network (ANN). This is achieved through the use of correlation-based feature

selection. We conducted an experimental analysis on the UNSW-NB ID and NSL-KDD datasets. The model

performed better in terms of sensitivity, accuracy, and specificity than several state-of-the-art methods.

However, there were several disadvantages to the model's use of ANN. It took a long time and a lot of training

data to complete the IDS training. Adding more layers improved the findings, but the model's memory and

computational performance remained poor. Artificial neural network characteristics such as the number of

hidden layers and neurons per layer enhanced system performance at the expense of increased temporal

complexity. Salih and Abdulazeez [21] examined 17 current methods that have been put out by different

scholars between 2018 and 2020. Selecting an algorithm has proven to be a challenging issue; researchers felt

that evaluating the performance of several classifiers was the best approach, which prompted a review of the

systems that were already in place. The review's conclusion is that feature selection improves the model's

performance by reducing training and testing times through the removal of superfluous features. Hybrid

classifiers may also offer the best option for attack detection. In the end, Practical Swarm Optimization (PSO)

produced the best results for feature selection, whereas Random Forest obtained the best accuracy. Choudhury

and Bhowal [22] examined the application of machine learning algorithms and a variety of categorization

approaches to analyze network traffic. It was determined that J48, Random Tree, BayesNet, PART, Logistic,

Random Forest, REPTree, IBK, and JRip were suitable for the classification method. More attention was paid

to the machine learning techniques of bagging, boosting, and blending (or stacking), and analyses of their

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

77

accuracy were conducted. These algorithms were compared using the WEKA tool, and the outcomes were

displayed according to performance standards. Using the NSL-KDD dataset, cross validation at tenfolds was

used to simulate the classification models. The researchers discovered that Random Forest and BayesNet

worked well. In comparison to Bagging, Boosting, and Blending, Boosting performed significantly better. The

researchers went on to say that the suggested algorithms might be utilized to create security-related network

intrusion detection devices that operate well.

Mahfouz et al. [23] examined classifiers by taking into account three distinct dimensions: feature

selection, hyper-parameter selection, and class imbalances. They only examined supervised machine learning

techniques in their analysis. The SMO (SVM), Naive Bayes, J48 (DT), Multilayer Perceptron (NN), Logistic

Regression, and IBK (KNN) methods were taken into consideration by the researchers. The models were

constructed for various stages. Phase one involved using the chosen classifiers with their default settings and

using the dataset without any preprocessing. By applying Stratified Cross-Validation with 10 folds on the

training set of data from the NSL-KDD dataset, the classifiers were trained. Over-fitting is evident in all

classifiers based on the accuracy of the training and test sets. At the second phase, data preprocessing was

done. The selection of features was done using the InfoGainAttributeEval technique, and the hyperparameter

optimization for each classifier was done using CVParameterSelection. Overfitting was found even though the

second phase's accuracy was higher than the first phases. By undersampling the dominant classes and

oversampling the minority classes, the third phase attempted to reduce the class imbalance in the dataset. In

contrast to the first and second phases, the mitigation of imbalance classes helped lessen the barriers to the

identification of R2L and U2R attacks.

Kajal and Nandal [4] used an artificial bee colony (ABC) in conjunction with a genetic algorithm and

the Discrete Wavelet Transform (DWT) for feature selection. Their study's objective was to develop an

intrusion detection system that could reliably identify attacks that were restricted to Denial of Service (DDOS)

attacks by utilizing the KDD dataset. The hybridized Artificial Neural Network and Support Vector Machine

(ANN-SVM) was used by the system as the foundation classifier. The suggested method was found to have

outperformed the other two existing systems in terms of effectiveness when it came to detecting intrusions

using the KDD dataset against denial-of-service attacks. In their research, [1] suggested using the random forest

classifier and principal component analysis (PCA) to create a model for an effective intrusion detection system.

Specifically, the study provided a technique for creating an effective IDS. Principal component analysis helped

to extract features from the data by reducing its dimensions, while random forest helped to classify attacks

using the Knowledge Discovery Dataset (KDD) into normal and intrusion categories. First, they used PCA to

extract characteristics, followed by random forest to classify attacks, and lastly, model evaluation. The study

by Kasongo and Sun [24] used a Wrapper based Feature Extraction Unit (WFEU) to implement a Feed-forward

Deep Neural Network (FFDNN) wireless Intrusion Detection System. The Extra Trees technique was

employed by the WFEU approach to extract optimal features. The UNSW and AWID datasets were used to

evaluate the model's efficacy and efficiency. The system was compared to several different machine learning

algorithms that are currently in use, such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN),

Random Forest (RF), Naive Bayes (NB), and Decision Tree (DT). Following feature extraction with the

WFEU, input was utilized for various algorithms for binary and multi-class classification, including the

FFDNN classifier. The WFEU-FFDNN technique outperformed the other approaches in terms of accuracy,

and the results show that the recommended system performed very well when compared to previous efforts.

Zhou et al. [25] suggested the heuristic Correlation-based Feature Selection - Bat Algorithm (CFS-

BA) in order to reduce the dimensionality of the dataset owing to the several redundant features in datasets.

Additionally, the researchers presented a voting method that integrated the Random Forest's AO (average of

probabilities) rule, Forest by Penalizing, and the C4.5 probability distributions. identifies methods as ensemble

because a classifier might not be effective in identifying every possible combination of threats. The objective

of the research is to develop an objective model that minimizes the amount of time and computational

complexity needed to enhance the stability and dependability of the intrusion detection system. Evaluation and

cross-validation were conducted on the NSL-KDD, AWID, and CIC-IDS datasets. The CFS-BA algorithm was

implemented, and relevant features were obtained. These features demonstrate that the approach was successful

in achieving the intended goal and drastically reducing dimensionality. For example, the NSL-KDD dataset

saw a reduction of 41 features to 10, the AWID dataset saw a reduction of 155 features to 8, and the CIC-IDS

saw a reduction of 78 features to 13 features. According to the analyses, comparisons, and findings, the CFS-

BA-Ensemble approach has significant advantages for intrusion detection systems.

Halimaa and Sundarakantham [26] used 19,000 records from the NSL-KDD dataset to compare the

prediction accuracy and misclassification rate of two prediction models, Naive Bayes and SVM, in three

distinct scenarios. The models in the first scenario made predictions based on a dataset that was not pre-

processed. In the second case, the models made predictions based on the characteristics obtained and the

features were selected using CfsSubsetEval. In the third case, the researchers fed the models with the

normalized data after normalizing the dataset for prediction. There were notable variations in each scenario's

accuracy and misclassification rates. SVM outperformed Naive Bayes in every situation in terms of accuracy

and misclassification rate.

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

78

Bhati and Rai [27] used the effectiveness of support vector machine (SVM) variants on the NSL-KDD

dataset, including Fine Gaussian (98.7%), Medium Gaussian (98.5%), Quadratic (96.1%), and Linear (98.6%).

IDS implementation consisted of four main steps: gathering data, preprocessing, splitting the data into train

and test sets, and lastly evaluating the model using metrics for confusion matrix, accuracy, and Receiver

Operating Characteristic (ROC). Based on the results, it was found that the Fine Gaussian SVM variation had

the best intrusion detection accuracy and lowest error rate. Bindra and Sood [28] analyzed Random Forest ML,

Linear SVM, K-Nearest Neighbor (KNN), Discriminant Analysis, Gaussian Naive Bayes, and Logistic

Regression algorithms in order to identify DDoS attacks in networks. The CIC-IDS-2017 dataset was used to

train and evaluate the methods that are compared in this research. With a 96.2% accuracy rating, Random

Forest was the most accurate model. The study credits the algorithm's usage of cross-validation for the

successful outcome. The tests also highlight the need to reduce the dataset's dimensionality; the Select

Percentile technique was used to reduce the features from 85 to 12, and the median of an attribute was used in

place of nan, which is not a number.

Chu et al. [29] examined the outcomes of machine learning (ML) methods on the NSL-KDD dataset.

These methods included the use of SVM, Nave Bayes, Decision Trees, and Artificial Neural Networks (ANN)

with MLP to identify Probe, DoS, Remote to Local, and User to Root assaults. The precision of SVM was

97.72 percent; that of ANN was 97.82 percent; that of Nave Bayes was 90 percent; and that of the J48 was 59.3

percent. The researchers found that adjusting the gamma and c parameters allowed SVM to achieve high

accuracy, but adding four layers to the Artificial Neural Network produced the highest accuracy. Although the

two algorithms that performed better did not show a significant difference in their results, the researchers found

that when they applied principal component analysis to minimize the feature space of the data on the NSL-

KDD dataset, the speed of classification increased significantly. Kim et al. [30] built an Intrusion Detection

System model using a convolutional neural network (CNN) and assessed it by contrasting it with a model

created using a recurrent neural network (RNN) using the CSE-CIC-IDS 2018 dataset. The data underwent

preprocessing, and features were selected. The dataset must be converted into pictures for a CNN. A model

consists of a fully linked layer, max-pooling layers, and convolutional layers. The model was implemented by

deploying maxpooling behind each convolutional layer. The max pooling layer was necessary even though a

CNN model does not need it since there is very little chance of losing significant features from the max pooling

because the modified images solely include quantitative data and do not contain any unseen signatures.

Moreover, the activation function'relu' was used for every convolutional layer. Every stage of the max pooling

process involves lead dropout in an attempt to reduce overfitting. Lastly, a fully connected layer is positioned

underneath the final max-pooling layer. Applying the CNN model to the CIC-2018 dataset showed that it

performed better in label classification than the RNN model. Additionally, one method suggested to enhance

the model's performance was to prepare the dataset with a proportion of data categorized as benign and data

labeled as attacks. In their study, Patgiri et al. [31] used Random Forest and Support Vector Machine to

examine the use of machine learning for intrusion detection. Recursive feature elimination (RFE) was used to

filter relevant features for both classifiers in an effort to reduce computing time. The models created were

evaluated using the NSL-KDD dataset. The researchers found that the substantial experimentation they

conducted was both time-consuming and negatively impacted performance. Before the Recursive Feature

Elimination approach was used, Random Forest's performance was superior to SVM's. Conversely, after

applying Recursive feature Elimination Cross Validation (RFECV) with the classifiers, SVM outperformed

Random Forest in terms of performance.

Taher et al. [32] used the NSL-KDD dataset to assess the effectiveness of SVM and artificial neural

networks. Their goal was to identify the classifier that had the highest accuracy and success rate. A wrapper

method was used to choose the features for the proposed models, resulting in a reduction of 35 features to 17.

The study also sought to determine the ideal learning rate and number of hidden layers; the findings indicate

that three hidden layers and a learning rate of 0.1 were optimal. The two classifiers were compared both before

and after feature selection was used in the evaluation process. When feature selection was used in either

scenario, the detection accuracy was higher; and artificial neural network performed better in both instances.

Xu et al. [33] presented an anomaly-based intrusion detection system, an optimization technique, a weighted

KNN, and the elimination of feature selection in an effort to enhance network intrusion detection performance.

The KDDCup intrusion detection dataset was used to evaluate the suggested IDS, and the results show that

weighted KNN increased efficiency at the expense of a slight accuracy loss. The researchers found that Naïve

Bayes and SVM can also be utilized for this purpose, even though only KNN was tested, and they stated that

they expect to apply SVM and Naive Bayes parameter optimization in the future.

Yulianto et al. [34] addressed the imbalance of training data (CIC-IDS 2017 Monday-Working-Hours-

DDoS-Attack dataset) by improving the performance of an AdaBoost-based Intrusion Detection System that

was already in place [35]. Significant attributes were selected using Principal Component Analysis (PCA),

Ensemble Feature Selection (glm, gbm, treebag, ridge and lasso), and Synthetic Minority Oversampling

Technique (SMOTE). The AdaBoost classifier was used for the label classification. First, the 225,745 records

of data were cleaned and scaled in accordance with the suggested methodology. The dataset was then divided

into two subsets: training, which comprised 70 percent of the data (158,022 records), and testing, which made

up the remaining 30 percent (67,723 records). SMOTE was employed to oversample the unbalanced classes,

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

79

and 25 features were selected using the Ensemble technique. Five iterations of cross-validation were carried

out after the model was built using AdaBoost. Ultimately, the precision, recall, and accuracy criteria were used

to evaluate the efficiency of model. The results showed that the suggested technique performed better than

[35]. Haripriya and Jabba [36] examined a number of machine learning algorithms that have been proposed by

prior research to find the best methods for intrusion detection system. Single, hybrid, and ensemble classifiers

were among the methods employed in the review of previous research. As a result, no specific way could be

chosen for the development of the Intrusion Detection System, according to the researchers, who discovered

that every algorithm has unique significance and contributions when compared to other approaches.

Additionally, when a particular quantity of traffic data is unavailable, the researchers found that it can be

challenging to train algorithms.

The work conducted by Ashraf et al. [37] employed J48, Random Forest, and Naïve Bayes classifiers

to calculate the detection rate and accuracy of IDSs. The experiments made use of the NSL KDD dataset. The

study examined the classification efficacy of J48, Random Forest, and Naïve Bayes on the 20% NSL KDD

dataset. The results showed that Random Forest performed better than Naïve Bayes in terms of accuracy and

detection rate. Given that all three classifiers were able to reach 90% recall and precision, a hybrid model that

combines the three might be suggested in the future. Chiba et al. [38] proposed an excellent method for creating

a Back Propagation Neural Network (BPNN)-based NIDS using KDD CUP' 99 datasets. Models totaling forty-

eight were developed by combining implementation parameters in different ways. After evaluation, two IDSs

were determined to be the best based on false positive rate, detection rate, F-score, and AUC. the count of

attributes, normalization, the architecture of the neural network—particularly the nodes to be used in the

layers—the momentum term, learning rate, and transfer function were the parameters that were found to be the

most important to be used in the construction of the classifier. In the third stage, the combinations of various

parameters were generated. In stage four, IDS was put into practice. In the fifth and final stage, the study

selected two models for comparison based on their respective levels of efficiency. Future research will employ

an optimized algorithm that looks for the best arguments to affect the model's performance.

Hajisalem and Babaie [39] proposed a novel hybrid classification technique based on artificial fish

swarms (AFS) and artificial bee colonies (ABC). The implemented methodology had the following structure:

dividing up the training datasets, choosing features, creating rules, and using hybrid classification. Based on

the planned ABC-AFS, the framework was created. Fuzzy C-Means Clustering (FCM) and Correlation-based

Feature Selection (CFS) methods were applied to divide the training data and remove redundant features. In

addition to the CART technique, If-Then rules built based on the chosen attributes were used in attempts to

differentiate between normal and abnormality records. The hybrid approach that was described was trained

using the rules that were developed. According to performance measures, the suggested approach obtained a

99 percent detection rate and a 0.01 percent false positive rate using the UNSW-NB15 and NSL-KDD datasets.

Furthermore, a time and computational cost comparison showed that the model's overhead is equal to that of

competing options.

Al-yaseen et al. [40] presented a system framework built on a multi-level hybrid support vector machine and

extreme learning. The modified K-means was used to reduce the dataset size and obtain smaller samples of the

dataset, or 10% of the KDD data, which results in tiny quality data, according to the researchers, who claimed

that SVM takes a lot of training time. There was one ELM classifier and four SVM classifiers used. The

findings demonstrated that they performed better than cutting-edge techniques and that there were no

significant variations in the detection performance. Additionally, the results show that the smaller dataset

contributed to improved accuracy and faster training times. However, using many classifiers led to an extended

testing period. Lin et al. [41] proposed a KNN model to reduce the feature characterisation of the dataset to

one dimension, based on Cluster Center and Nearest Neighbors (CANN). The recently obtained dataset was

employed to assess the foundational classifier. The first dimension of the dataset is where the CANN classifier

performs better than the KNN and SVM classifiers, according to the results. The frequency of false alarms was

reduced and the accuracy of identification was higher with the CANN. KNN and SVM were shown to be

computationally costly when tested on two datasets, however CANN was found to be computationally light.

Regarding the limitations of the study, CANN failed to identify R2L and U2R attacks since the one-

dimensional representation could not accurately reflect them. Moreover, CANN required extra computations

to eliminate the separation-based features.

Maharaj and Khanna [42] worked on Voting Feature Interval (VFI) and Algorithm Reptree. In light

of the fact that certain classification algorithms forbid the prediction of more than two classes, the researchers

decided to focus their study's conclusions on developing a classifier capable of multiclass classification. Most

current systems, they claim, only identify whether an attack has occurred or not and do not provide specific

information about the type of attack. The KDDCUP dataset was evaluated utilizing the Receiving Operating

Characteristic (ROC) curve, which provided information on the Area Under Curve (AUC), False Positive Rate

(FPR), and True Positive Rate (TPR). The analysis that followed led to the conclusion that the REPTree

learning algorithm is superior and more effective for intrusion detection systems. The goal of the Ghosh et al.

[43] study was to enhance the performance of the classifier for detecting intrusion by utilizing hybridized K-

Nearest Neighbors and Neural Networks (KNN-NN) and multilevel feature selection. Before the classification,

four steps were required: first, the NSL-KDD data set used for the experimental analysis was preprocessed;

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

80

second, the Rough Set Theory (RST) wrapper method was chosen for the first feature selection; and third,

normalization and discretization were completed before using the RST. In step three, the second level feature

selection procedure was carried out using the Information Gain (IG) filter approach. Following completion of

all of these, the classification process began. It was carried out in two stages, with KNN being applied initially

and the output being used as an input for neural networks.

Jongsuebsuk et al. [44] developed an IDS for classifying network attack data using a fuzzy rule

algorithm and a genetic algorithm on the KDD99 dataset in addition to the researchers' own dataset. The results

showed that the developed IDS can accurately identify network threats in real time with low false alarm rate

and high detection speed. Patel et al. [3] conducted a review of data mining approaches, including K-Nearest

Neighbors (KNN), Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Tree (DT),

and Naive Bayes (NB). The researchers went on to discuss the benefits and drawbacks of the algorithms.

Although the dataset statistics for this study were not disclosed, all of the implemented algorithms performed

poorly. However, the evaluation results led the researchers to the conclusion that combining multiple

algorithms could potentially mitigate their disadvantages because different algorithms have varying

perspectives on the situation and improve system performance. Vinayakumar et al. [45] proposed a robust

intelligent malware detection using deep learning. First, the study uses several datasets to compare the

effectiveness of deep learning and standard machine learning architectures for malware detection. Second, the

datasets used to train and evaluate the machine learning model are free of any bias thanks to the study. Thirdly,

the research suggests a brand-new method of picture processing that provides the best settings for deep learning

architectures and machine learning algorithms to produce an efficient zero-day malware detection model. The

suggested deep learning architectures outperform traditional machine learning methods, according to a

thorough comparison analysis of their model. In a large data setting, the study's primary contribution is the

integration of deep learning and visualization architectures enabling hybrid approaches based on image

processing, static, and dynamic processes.

Mahindru and Sangal [46] proposes a framework for android malware detection using machine

learning techniques. The proposed framework uses its dynamic analysis to find viruses in Android apps. The

study trained the suggested framework by choosing features obtained by applying feature selection algorithms

in order to detect malware from real-world apps. A model was constructed using the chosen features while

taking various machine learning algorithms into account. More than 500,000 Android apps were subjected to

experimental investigation in this study. The outcome showed that the suggested model outperformed similar

techniques for malware detection on practical applications. Baek et al. [47] proposed a two-stage hybrid

malware detection using deep learning in internet of things environment. In the first step, opcode is retrieved

via static analysis, and harmful files are identified using a bidirectional long short-term memory model on the

information that has been extracted. A dynamic analysis of files categorized as innocuous in a nested virtual

environment is part of the second stage. Convolutional neural networks were utilized to detect malwars after

information on behavior and process memory was extracted from the behavior log based on system

modifications.

Bakır and Bakır [48] proposes a malware detection using auto-encoder based feature extractor and

machine learning algorithms. The study suggests using a brand-new autoencoder-based model called

DroidEncoder to categorize Android malware apps. An image-based Android app dataset with 3000 malicious

and 3000 benign apps was employed in the study. Additionally, three distinct auto-encoders—ANN-based,

CNN-based, and VGG19-based—were used in the study to extract features from the malware dataset that was

displayed. Three separate feature extraction experiments were carried out in the study in order to train several

machines learning algorithms, including support vector machines, k-nearest neighbors, decision trees,

additional trees, LightGBM, XGBoost, Random Forest, and linear regression. The outcomes demonstrated that

the suggested technique for malware identification performed better than other comparable machine learning

techniques. Khan et al. [49] proposes a Digital DNA Sequencing engine for ransomware detection using

machine learning. The study evaluated the suggested approach's effectiveness using 582 ransomware and 942

benign cases, evaluating performance according to the terms of accuracy, recall, f-measure, and precision. The

findings demonstrated that the suggested strategy outperformed alternative techniques for ransomware

detection.

Ciaramella et al. [50] proposed an explainable ransomware detection with deep learning techniques.

An openly accessible dataset was used to evaluate the proposed deep learning model for ransomware detection.

When the suggested model was compared to other comparable techniques, the findings demonstrated improved

accuracy for malware identification during the training and test phases across a dataset of more than 15,000

components. Additionally, the research took advantage of the Gradient-weighted Class Activation Mapping in

the created technique to raise the malware detection classification accuracy. Almazroi and Ayub [51] proposes

a deep learning hybridization for improved malware detection in smart Internet of Things (IoT) environment.

The study presented a unique Feed Forward Neural Network Framework (BEFNet) for Internet of Things

scenarios, based on BERT. Eight datasets, each representing a distinct malware type, were used to evaluate the

proposed system using different modules. Additionally, the Spotted Hyena Optimizer (SO) was used to

optimize the suggested technique, demonstrating its flexibility in handling various malware data shapes. In

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

81

comparison to similar machine learning techniques, the comparative evaluation findings highlight the superior

performance of the suggested strategy for malware detection in IoT environments.

Brown et al. [52] proposes an automated machine learning (AutoML) for deep learning-based

malware detection. The research offered a thorough examination and practical advice on applying AutoML to

the identification of online and static malware. In the case of static, the suggested approach was examined

using two popular malware datasets: SOREL-20M, which was used to show the method's effectiveness on big

datasets, and EMBER-2018, a smaller dataset that was deliberately chosen to impede the performance of

machine learning models. The study also demonstrated how adjusting the parameters of the neural architecture

search (NAS) method can lead to the identification of a malware detection model that is more ideal for use

with these static analysis datasets. Additionally, the study showed that AutoML performs well when used with

Convolutional Neural Networks (CNNs) for cloud services in cases including online virus detection. The study

used a newly produced online malware dataset, with and without other programs running in the background

during malware execution, to compare the proposed AutoML technique to six current state-of-the-art CNNs.

The outcomes shown that the suggested AutoML technique outperformed the most advanced CNNs with

minimal overhead in terms of architecture discovery. Overall, the test findings demonstrated that AutoML-

based static and online malware detection models perform as well as or better than cutting-edge malware

detection models.

Talukder et al. [53] suggested a hybrid ML model for NIDS. The goal of the suggested approach is

based on how current IDS fall short in addressing difficulties with low detection accuracy and processing

enormous amounts of data for attack detection. As a result, the study suggested a hybrid model that combines

ML and DL techniques in order to create a trustworthy and accurate IDS. Five stages make up the suggested

paradigm. The first stage handled missing values and encoded attribute values as part of data preprocessing.

SMOTE was used in the second step to solve the problem of data imbalance in the datasets. The most pertinent

features from the datasets were extracted in the third stage using the XGBoost algorithm. The processed dataset

is split into a training and testing set in the fourth stage using K-fold cross validation. After choosing the best

attributes, ML and DL algorithms were used to create the models. The effectiveness of other ML algorithms,

including RF, DT, KNN, MLP, Convolution Neural Network (CNN), and Artificial Neural Network (ANN),

for detecting network intrusion was compared with the performance of the created ML and DL techniques.

When compared to existing models, the suggested strategy provides excellent detection accuracy on two

datasets without any overfitting, according to the results. The proposed technique was not tested on modern

datasets and does not provide a structured taxonomy for intrusion classification. Table 1 show the highlights

of related studies.

Table 1. Highlights of related studies

S/N Author/Year Technique Advantage Disadvantage

1. Khan et al. [19]
Recurrent Neural Network and

a Convolutional Neural

Network

Provides excellent detection

accuracy
Long training time

2. Thaseen et al. [20]
Correlation-based Artificial

Neural Network
Better detection accuracy

Long training time and require

a lot of training data

3.
Salih and

Abdulazeez [21]

Particle Swarm Optimization

and Random Forest
Detection speed and accurate

Slow and not suitable for real-

time detections

4.
Choudhury and

Bhowal [22]
Random Forest and BayesNet

Better classification

performances
Long training time

5. Mahfouz et al. [23] Machine learning techniques
Reduce class imbalance and

increase classification rate
Overfitting problem

6.
Kajal and Nandal

[4]

Artificial Neural Network and

Support Vector Machine
(ANN-SVM)

High precision value Long training time

7. Waskle et al. [1]
Random forest classifier and

principal component analysis

Reduced feature dimension

and accurate classification

It is not robust against data

imbalance problem

8.
Kasongo and Sun

[24]
Wrapper-based Feed-forward

Deep Neural Network
Better detection accuracy

High training time and
overfitting problem

9. Zhou et al. [25]

Correlation-based Feature

Selection- Bat Algorithm (CFS-
BA) and Ensemble method

Minimizes the amount of

processing time and data
imbalance problem

Inability to detect rare network

attacks

10.

Halimaa and

Sundarakantham
[26]

Naive Bayes and Support

Vector Machine (SVM)
Better detection accuracy

It is not suitable for large

datasets and inability to detect
rare network attacks

11. Bhati and Rai [27] Fine Gaussian SVM variation
Better detection accuracy and

low error rate
Long training time

12.
Bindra and Sood

[28]
Random Forest

Provides high detection
accuracy

Slow and ineffective for real-
time predictions

13. Chu et al. [29] SVM High detection speed
Slight accuracy loss based on

their feature selection method

14. Kim et al. [30]
Convolutional Neural Network

(CNN)
Better classification rate Data imbalance problem

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

82

15. Patgiri et al. [31]
Random Forest and Support

Vector Machine

Provides high detection

accuracy

High time and computational

cost

16. Taher et al. [32]
SVM and artificial neural

networks
Provides high detection

accuracy
High time and computational

cost

17. Xu et al. [33] Weighted KNN Increased efficiency Slight accuracy loss

18. Yulianto et al. [34] AdaBoost classifier
Provides better detection

accuracy

It is not suitable for noisy data

and sensitive to outliers

19.
Haripriya and Jabba

[36]
Machine learning algorithms

Provide a review contribution

to the field of intrusion
detection systems

It is very difficult to train the
algorithms when certain

amount of traffic data is not

available

20. Ashraf et al. [37] Random Forest Algorithm
Provides good detection

accuracy

Slow and ineffective for real-

time predictions

21. Chiba et al. [38]
Back Propagation Neural

Network

Provides excellent detection

accuracy

High time and computational

cost

22.
Hajisalem and

Babaie [39]

Artificial fish swarms (AFS)

and artificial bee colonies

(ABC)

High detection rate and low
false positive rate

High time and computational

cost

23. Al-yaseen et al. [40]
Support vector machine and

Extreme learning
Improved accuracy and faster

training times
Extended testing period

24. Lin et al. [41]
Cluster center and nearest

neighbor (CANN) approach

Effective detection rate and

false alarm

Required extra computations. It

failed to identify R2L and U2R
attacks

25.
Maharaj and

Khanna [42]
Data mining approach

Effective performance and

low false alarm rates
High training time

26. Ghosh et al. [43]
K-Nearest Neighbors and

Neural Networks (KNN-NN)
Good classification result

High computation cost and
requires high memory storage

27.
Jongsuebsuk et al.

[44]

Fuzzy Genetic Algorithm

Low false alarm rate and

high detection
Time-consuming

28. Patel et al. [3] Data mining approach
Provide review of data

mining approaches

Poor performances of
implemented methods and

dataset statistics were not

disclosed

29.
Vinayakumar et al.

[45]
Deep learning High detection accuracy Lack of Interpretability

30.
Mahindru and

Sangal [46]
Machine learning techniques High detection rate Model stability issue

31. Baek et al. [47] Hybrid deep learning
Provides excellent detection

accuracy

Require a lot of training data

for effective learning

32.
Bakır and Bakır

[48]

Auto-encoder based feature

extractor

Provides excellent detection

accuracy
Prone to overfitting

33. Khan et al. [49] Active Learning Algorithm Good detection performance
It cannot deal with limited

annotated data
34. Ciaramella et al. [50] Deep learning techniques Good computational efficiency Lack of feature selection method

35.
Almazroi and Ayub

[51]

BERT-based Feed Forward Neural

Network
High detection accuracy High computational time

36. Brown et al. [52] Convolutional Neural-Networks High detection accuracy High computational time

37. Talukder et al. [53] Hybrid ML method
Provides excellent detection

accuracy
It was not tested on modern datasets

3. Materials and method

In this study, a Hybrid Network Intrusion Detection Framework using Neural Network-Based

Decision Tree (HNIDF-NN-DT) model was developed. The developed model is divided into four modules:

Data collection, data preprocessing, feature selection and detection. The data collection module adapted the

NSL-KDD dataset for implementation due to its modern attack representation. The data preprocessing module

convert the adapted dataset into the format suitable for machine learning. The data preprocessing module also

used the random undersampling technique to reduce data imbalance problem. The feature selection module

consists of a hybrid feature selection method. A hybrid feature selection method was used to select the most

important features from the adapted intrusion dataset. The first step of the hybrid feature selection method

utilized forward selection to choose feature subsets. The forward selection start from an empty set, and

sequentially add features from the full feature set with an already selected features that result in the highest

accuracy of the classifier. The second step used backward elimination method to select feature subsets. The

backward elimination starts from the full set, and sequentially remove the feature that results in the smallest

decrease in the accuracy of the classifier. Two intermediate feature subsets are formed from the first and second

steps with least number of features. The third step combines the two intermediate feature subsets into a pool

and used Genetic search method to select the best features from the pool of feature subset. The genetic search

algorithm evaluates the merits of each attribute and returns selected features with highest fitness value. The

rule evaluation phase of the third step check if two feature subsets have the same fitness value, the rule-based

engine returns the feature subset with least number of subset features. The detection module involves a neural

network-based decision tree classifier for the automatic generation of rules for intrusion detection. The selected

features from the feature selection module serve as input into a neural network-based decision tree classifier to

generate the rules for the automatic design of NIDS. Each node of the decision tree represents a neural network

processing unit. The node partitioning entropy function of the decision tree was replaced by the sigmoid

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

83

function of the neural network. The selected features from the feature selection module serve as input into a

neural network-based decision tree classifier to generate the rules for the automatic design of NIDS and

accurate prediction of attacks. The decision tree provides the detection rules for the interpretability of detection

decisions and the neural network provide the accuracy needed for attack detection. Figure 1 shows the

architecture of the developed Hybrid Network Intrusion Detection Framework using Neural Network-Based

Decision Tree model.

Figure 1: Architecture of the developed architecture of the developed Hybrid Network Intrusion Detection Framework

using Neural Network-Based Decision Tree mode

3.1. Dataset collection module

The NSL-KDD dataset was adopted for implementation due to its effectiveness for modern intrusion detection

system [54]. The dataset consists of 41 attributes that are classified as either normal or anomalous. Table 2

shows the attack categories in the dataset.

Table 2. List of Attack Category

Attack type Category

Back, Land, Neptune, Pod, Smurf, Teardrop, Mailbomb, Apache2,

Processtable, Udpstorm, Worm
DoS

Ipsweep, Nmap, Portsweep, Satan, Mscan , Saint Probing

Ftp_Write, Guess_Passwd, Imap, Multihop, Phf, Spy, Warezclient,

Warezmaster, Warezmaster, Sendmail, Named, Snmpgetattack,

Snmpguess, Xlock, Xsnoop, Httptunnel

R2L

Buffer_Overflow, Loadmodule, Perl, Rootkit, Ps, Sqlattack, Xterm U2R

3.2. Data preprocessing module

The data preprocessing module also used the random undersampling technique to reduce data

imbalance problem. Random Under-sampling was used to shift the class distribution of the dataset in order to

prevent model bias. Using the random undersampling technique, instances from the majority class are chosen

at random and then removed from the training dataset. Additionally, datasets with an uneven distribution of

observations for the target class—that is, one class label having a very high number of observations while the

other has a very low number of observations—are referred to as imbalanced data. Random under-sampling

technique is used regularize the minority or majority class. In order to match the majority class with the

minority class, rows from the majority class can be randomly removed using this technique. A balanced dataset

for both majority and minority classes can be obtained after sampling the data. Given that both classes have an

equivalent number of records in the dataset, it follows that the classifier will assign equal weight to each class.

3.3 Feature selection

In order to choose the most important characteristics from the preprocessed dataset, the feature selection

module employed a hybrid feature selection technique:

• Forward selection: Beginning with an empty set (Equation 1), sequentially adds features from the

whole feature set 𝑋+ that results in the greatest accuracy J(𝑌𝑘+ 𝑋+) when combined with the features

𝑌𝑘 that have already been chosen (Equation 2).

𝑌𝑜 = {∅} (1)

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

84

𝑋+ = argmax
𝑋∉𝑌𝑘

[𝐽(𝑌𝑘 + 𝑋)] (2)

• Backward elimination: Beginning with the full set (Equation 3), sequentially eliminates the

characteristic 𝑋− that causes the accuracy classifier to decrease the least J(𝑌𝑘 − 𝑋) as in Equation 4.

𝑌𝑜 = 𝑋 (3)

𝑋− = argmax
𝑋∉𝑌𝑘

[𝐽(𝑌𝑘 − 𝑋)] (4)

• Genetic search: Genetic search is a search motivated by natural evolution. This genetic search

employs a fitness function, which is a linear combination of an accuracy term and a simplicity term.

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) =
3

4
𝐴 +

1

4
(1 −

𝑆+𝐹

2
) (5)

where X is a feature subset, A is the average cross-validation accuracy of the classifier, S is the number

of instances or training samples, and F is the number of subset features.

• Rule evaluation: The rule-based engine returns a feature subset (𝑉𝑖) with fewer features (𝑋𝐹) if there

are many feature subsets (𝐹>) with equivalent fitness values; otherwise, it returns the feature subset

with the greatest fitness value (𝐹ℎ𝑖) to the basic classifier as in (6).

𝑅 = {
𝑉𝑖 , 𝑖𝑓 𝑉𝑖 ∈ 𝐹>⋂𝑋𝐹

𝑉𝑖 , 𝑖𝑓𝐹ℎ𝑖⋂∅
 (6)

3.4 Detection

The detection module involves a neural network-based decision tree classifier for the automatic

generation of rules for intrusion detection. The selected features from the feature selection module serve as

input into a neural network-based decision tree classifier to generate the rules for the automatic design of NIDS.

Each node of the decision tree represents a neural network processing unit. The node partitioning entropy

function of the decision tree was replaced by the sigmoid function of the neural network. The selected features

from the feature selection module serve as input into a neural network-based decision tree classifier to generate

the rules for the automatic design of NIDS and accurate prediction of attacks. The neural network-based

decision tree provides the detection rules for the interpretability of detection decisions and the neural network

provide the accuracy needed for attack detection. The neural network-based decision tree was applied to the

chosen features in order to determine the rules for the automatic creation of network intrusion detection system.

The neural network-based decision tree technique was used to extract the rules that separate normal traffic

from intrusive traffic using the adapted dataset. A neural network-based decision tree can be expressed as a

recursive partition of the instance space. In the developed neural network-based decision tree, each internal

node represents a neural network processing unit. The node partitioning entropy function of the decision tree

was replaced by the sigmoid function of the neural network to split the instance space into two or more sub-

spaces according to the sigmoid function of the input attributes values. The measure for selecting the best split

based on the degree to which instances belong more to one class than the others is given by Equation 7.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑡) = − ∑ 𝑝(𝑖|𝑡) 𝑙𝑜𝑔2 𝑝(𝑖|𝑡) 𝑐−1
𝑖=0 (7)

where:

c is the number of classes while 𝑝(𝑖|𝑡) denotes the fraction of instances belonging to class i at a given node t.

In order to represent each node of the decision tree as a neural network processing unit, the following

procedures are defined: First, there may be several inputs 𝑥𝑖, i = 1, …, m in the nodes of the decision tree. Each

input 𝑥𝑖 is multiplied by the corresponding weight 𝑤𝑘𝑖 where k is the index of a given neuron in a neural

network. The weighted sum of products 𝑥𝑖𝑤𝑘𝑖, for i = 1, …, m is usually denoted as net in the neural network

literature:

𝑛𝑒𝑡𝑘 = 𝑥𝑖𝑤𝑘𝑖 + 𝑏𝑘 (8)

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

85

Finally, a neural network computes the output 𝑦𝑘 as a certain function of netk value as in (9) and the

modified entropy function for selecting the best split based on the degree to which instances belong more to

one class than the others using the sigmoid function is given by Equation 10.

𝑦𝑘 =
1

(1 + 𝑒−𝑛𝑒𝑡)
 (9)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑡) = − ∑ 1/(1 + 𝑒−𝑛𝑒𝑡) 𝑙𝑜𝑔2[1/(1 + 𝑒−𝑛𝑒𝑡)] (10)

𝑐

𝑖=1

where: 1/(1 + 𝑒−𝑛𝑒𝑡) denotes the probability of randomly selecting an instance in class i. The splitting

criterion used by the J48 decision tree algorithm is known as gain ratio to determine the goodness of a split.

The criterion is defined as in Equation 11.

𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐷) − ∑
|𝐷𝑣|

|𝐷|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦

𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

(𝐷𝑣) (11)

where:𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) denote the set of all possible values for attribute A and 𝐷𝑣 denote the subset of dataset D

having value v for attribute A.

3.5 Algorithms

Algorithm 1 depict the hybrid feature selection method. The hybrid feature selection technique uses

Forward Selection, Backward Elimination, Genetic Search, and Rule Evaluation techniques. A hybrid feature

selection technique was applied to the preprocessed dataset to determine which features were most crucial. The

first step of the hybrid feature selection technique employed forward selection to choose feature subsets, while

the second step used backward elimination. The forward selection process begins with an empty set and

sequentially adds features from the whole feature set with features that have already been chosen to provide

the classifier's greatest accuracy. Backward elimination starts with the entire set and sequentially eliminates

the characteristic that causes the accuracy classifier to decrease the least. The first and the second steps

produced two intermediate feature subsets with least number of features. In the third step, the two intermediate

feature subsets are combined into a pool, and the best features are chosen from the pool of feature subsets using

the genetic search approach. The genetic search algorithm evaluates the performance of each attribute and

returns selected features with highest performance. The rule evaluation phase was used to return the feature

subset with least number of subset features if there exist two feature subsets that have the same fitness value.

Genetic search method was used to search the final best features from the pool of feature subsets.
ALGORITHM 1: Hybrid feature selection

INPUT: Training Dataset X{𝑥1, 𝑥2, … . , 𝑥𝑘 | xi ∈ C}

OUTPUT: Xr //reduced features

Process:

1. BEGIN

2. 𝑌 ← X(𝑥1, 𝑥2, … . , 𝑥𝑘)
3. 𝑌𝑜 = {∅} //forward selection

4. 𝑋+ = argmax
𝑋∉𝑌𝑘

[𝐽(𝑌𝑘 + 𝑋)]

5. 𝑌𝑘+1 = 𝑌𝑘 + 𝑋+, 𝑘 = 𝑘 + 1 //update

6. 𝑌𝑜 = 𝑋 // Backward elimination

7. 𝑋− = argmax
𝑋∉𝑌𝑘

[𝐽(𝑌𝑘 − 𝑋)]

8. 𝑌𝑘+1 = 𝑌𝑘 − 𝑋−; 𝑘 = 𝑘 + 1 //update

9. P = 𝑋+ + 𝑋− // feature pool

10. BEGIN

11. Generate random population n from P

12. Np ← m x n
13. WHILE Np is not empty do

14. P1 ← TournamentSelection (Np)

15. P2 ← TournamentSelection (Np - P1)
16. Select a random number r ⱻ 0 ≥ r < 1

17. IF (r < p) do // if r is less than the crossover rate

18. crossover(P1, P2)

19. ELSE return P1 , P2

20. mutation(P1 , P2)

21. k ← P1 , P2

22. Return k ∈ P for which f(x) is highest.

23. END-IF

24. END WHILE

25. IF two feature subsets have the same fitness value
26. //return the feature subset with least number of subset features

27. return Xr

28. END-IF
29. END

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

86

Algorithm 2 depict the algorithm for finding the best split attribute of the decision tree using the

sigmoid based entropy function. The algorithm started by initializing weights for all the decision tree nodes.

The algorithm checks if all instances in the dataset X have same class c and label the decision tree accordingly.

The algorithm then checks if no attribute has positive entropy based on the sigmoid function, and assign the

decision tree the most common class in the dataset. The algorithm checks for attribute with the highest entropy

based on the sigmoid function and label the decision tree with such attribute and return the resultant tree.

ALGORITHM 2: find_best_split

INPUT: Dataset X, Feature F
OUTPUT: Tree T

Process

1. BEGIN

2. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑡) = − ∑ 𝑝(𝑖|𝑡) 𝑙𝑜𝑔2 𝑝(𝑖|𝑡) 𝑐−1
𝑖=0

3. 𝑛𝑒𝑡𝑘 = 𝑥𝑖𝑤𝑘𝑖 + 𝑏𝑘

4. 𝑦𝑘 =
1

(1+𝑒−𝑛𝑒𝑡)

5. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑡) = − ∑ 1/(1 + 𝑒−𝑛𝑒𝑡) 𝑙𝑜𝑔2[1/(1 + 𝑒−𝑛𝑒𝑡)] 𝑐
𝑖=1

6. 𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐷) − ∑
|𝐷𝑣|

|𝐷|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) (𝐷𝑣)

7. 𝑊 = 𝑤0

8. For 𝐹 = 0 to 𝐹 − 2 do

9. if all instances in X have same class c

10. Label(T) =c; Return T

11. If F=∅ or no attribute has positive entropy

12. Label (T) = most common class in X; return T

13. F←attribute with highest entropy

14. Label(T) = F
15. End For

16. For each f of F

17. 𝑋𝑓 ←instances in X with F=f

18. If 𝑋𝑓 is empty

19. Let 𝑇𝑓 be a new tree

20. Label (𝑇𝑓)=most common class in X

21. Else

22. 𝑇𝑓=(𝑋𝑓, F-{F})

23. Add a branch from T to 𝑇𝑓 with label f

24. Return T

25. End For each

End

Algorithm 3 depict the Neural Network-Based Decision Tree (NN-DT). This algorithm builds the J48

decision tree based on neural network. The J48 decision tree builds a tree of rules during the training phase to

appropriately separate the network traffics into normal or attack classes. During testing phase, the tree of rules

is generated for the automatic construction of rules to classify the input features as normal or attack. The

algorithm works by recursively selecting the best attribute to split the data (Step 9) and expanding the leaf

nodes of the tree (Step 13 and 14) until the stopping criteria is met (Step 3). The createNode() function extends

the decision tree by creating a new node. A node in the decision tree has either a test condition, denoted as

node.test_cond, or a class label, denoted as node.label. The Classify () function (Step 5) determines the class

label to be assigned to the leaf node. For each leaf node t, let p(i|t) denote the fraction of training data from

class i associated with the node t. the leaf node is assigned to the class that has the majority number of training

data. The find_best_split() function determines which attribute should be selected as the test condition for

splitting the training records. The stopping_cond() function is used to terminate the tree-growing process by

testing whether all the instances have either the same class label or the same attribute values.

ALGORITHM 3: Neural Network-Based Decision Tree (NN-DT)

INPUT: Attribute_set F{ f1,f2,…,fn }, Training Dataset Xr{x1,x2,…,xn | xi ∈ C}, SplitRatio S

OUTPUT: Pruned Decision Tree

Process:

1. BEGIN

2. // BuildTreeClassifier

3. IF stopping_cond(X,F) = true THEN

4. leaf = createNode()

5. leaf.label = Classify(X)

6. return leaf

7. ELSE

8. root = createNode()

9. root.test_cond = find_best_split(X,F)

10. let V = {v|v is a possible outcome of root.test_cond}

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

87

11. FOR EACH v ∈ V DO

12. Xv = {x |root.test_cond(x) = v and x ∈ X}

13. child = buildTreeClassifier(X,F)

14. add child as descendant of root and label the edge as v

15. END FOR

16. END IF

17. Return root

18. // Prunning Algorithm

19. GrowingSet G ← set of training data used to build the tree

20. PruningSet P ← set of training data for validating the tree

21. P,G = splitExamples(S,X,F) //split training data

22. tree = TreeClassifier(G,F)

23. WHILE(true)

24. prunedTree = bestSimplification(tree,P) //pruning process

25. IF (accuracy(prunedTree,P) < accuracy(tree,P))

26. Break;

27. tree = prunedTree

28. END IF

29. END WHILE

30. Return Pruned Decision Tree

END

4. Results

4.1 Implementation

The implementation of the developed Hybrid Network Intrusion Detection Framework using Neural

Network-Based Decision Tree (HNIDF-NN-DT) model was carried out with Java programming language due

to its support for pure object-oriented design, flexibility, portability and the rich graphical interface. NetBean

was used as the Integrated Development Environment (IDE). Notepad++ was used to edit the dataset. WEKA

API was used as the java plug-in for the used algorithms. Microsoft Excel was used for chart development.

4.2 Feature extraction

The developed hybrid feature selection method selected 6 features as shown in the Table 3 below. The

essence of the feature selection is to extract the most important features from the full dataset that will enhance

detection accuracy and reduce computational time. The table show the number of features selected, the serial

number of features selected and their feature names.

4.3 Neural Network-Based Decision Tree

The result of this neural network-based decision tree can be described as set of rules, encapsulating

the attributes in the selected features of the adapted dataset. Figure 2 show the rules representation of the neural

network-based decision tree. The developed neural network-based decision tree model generated 101 leaves of

rules for the classification of network intrusions. The neural network-based decision tree algorithm is a

predictive data mining technique used in the prediction of network intrusions. It uses a predictive model to

transform from item of observations (represented by branches) to rules about the target value of the item

(represented in the leaves). Each node of the decision tree represents a neural network processing unit for

accurate prediction and for interpretability of classification decisions.

The justification for the neural network-based decision tree is to provide automatic rules generation for the

construction of NIDS. Another justification for the use of the neural network-based decision tree is for the

decision tree to provide the detection rules for the interpretability of detection decisions and the neural network

to provide the accuracy needed for attack detection. The developed neural network-based decision tree enables

the resultant classification tree to be easier to understand and interpret. A predictive neural network-based

decision tree was developed using J48 and neural network weka API in Java program. A 5-fold cross-validation

was used to avoid overfitting and further prevent dataset imbalance problem.

Table 3: Selected features

No of
features

selected

Feature

selected
Feature name

6 4,5,6,12,26,30
flag, src_bytes, dst_bytes,
logged_in, srv_serror_rate,

diff_srv_rate

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

88

Figure 2: A snippet of the rules for the neural network-based decision tree.

Table 4 show the rules extracted from the leaves of the neural network-based decision tree generated

in Figure 2. A total of 101 rules were extracted from the leaves of the generated neural network-based decision

tree model for the prediction of anomaly or normal. For instance, rule 1 in Table 4 can be interpreted as “If

src_bytes <= 28 && diff_srv_rate <= 0 && flag = OTH && srv_serror_rate <= 0.03 THEN put class in

anomaly”. This means if src_bytes attribute <= 28 and diff_srv_rate attribute <= 0 and flag attribute = OTH

and srv_serror_rate attribute <= 0.03, then classify network traffic as an anomaly class for the development of

network intrusion detection system. Similarly, rule 2 in Table 4 can be interpreted as “If srv_serror_rate > 0.03

THEN put class in normal”. This means that if the srv_serror_rate attribute > 0.03 then classify network traffic

as normal class. Table 4 shows 24 rules out of the 101 rules generated due to space limitation.

4.4 Performance metrics

The developed Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision

Tree model for network intrusion detection system was evaluated and compared with other related machine

learning methods using the evaluation metrics listed below.

• True positive rate (TP): The number of cases that were appropriately categorized in the typical class

is shown here. This is indicated in (12).

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12)

• False positive rate (FP): These are the instances that were wrongly assigned to the typical class. It is

indicated in (13).

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (13)

• Precision: This serves as a measure of the accuracy, assuming that a particular class that was predicted

to be positive truly is positive. It is indicated in (14).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14)

• Recall: This is an indicator of how many labelled occurrences a prediction model successfully

recognizes, as shown in (15).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15)

• F-measure: This represents the harmonic mean of the precision and recall based on a particular

threshold. It is employed to evaluate the quality of the classification, as suggested in (16).

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (16)

• Accuracy: This is the proportion of instances that were correctly categorized over all instances. It is

indicated in (17).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (17)

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

89

Table 4: Sample Leaves of the neural network-based decision tree

4.5 Results

Table 5 show the comparison of the developed Hybrid Network Intrusion Detection Framework using Neural

Network-Based Decision Tree (HNIDF-NN-DT) model for network intrusion detection system with other

existing Machine Learning (ML) algorithms using the full dataset. Most of the ML algorithms on intrusion

detection using the full dataset obtained F1-score of at least 73.03% classification rates. The F1-score of

HNIDF-NN-DT on the full dataset is better with 98.56% compared to Multilayer Perceptron with the closest

score of 94.79%. The results suggest Random Forest as the least ML algorithm for the classification of

intrusions with F1-score of 73.03%. The outcomes demonstrated that the optimum method for network

intrusion detection is HNIDF-NN-DT while the worst network intrusion detection method is Random Forest

across the evaluation metrics using the full dataset. The results showed that the developed HNIDF-NN-DT is

an improvement over the other related methods with TP, FP, accuracy, precision, recall, and F1-score of 98.7,

1.3, 98.42%, 98.54%, 98.56% and 98.56 respectively compared to the other related methods. Overall, the

results demonstrated that the various ML methods on the full dataset for network intrusion detection performed

well.

Table 5: Performance comparison on full dataset

Algorithm TP FP Accuracy Precision Recall F1 score

C4.5 tree 97.5 2.5 95.78 94.43 92.63 93.23

Decision Table 94.2 5.8 89.33 88.54 88.34 88.24

Bagging 97.8 2.2 93.76 93.51 89.61 92.36

KNN 97.7 2.3 89.57 86.53 85.76 86.34

Logistic 93.9 6.1 94.32 94.53 89.53 93.33

Naïve Bayes 90.3 9.7 77.36 69.53 75.24 75.34

Bayesian Logistic

Regression
91.6 8.4 83.45 93.52 88.62 91.63

Naïve Bayes

Multinomial
90.7 9.3 80.06 75.34 74.34 75.35

Multilayer Perceptron 94.2 5.8 92.53 94.63 94.36 94.79

Random forest 97.9 2.1 73.04 73.03 73.02 73.03

HNIDF-NN-DT 98.7 1.3 98.42 98.54 98.56 98.56

Table 6 show the comparison of the developed Hybrid Network Intrusion Detection Framework using

Neural Network-Based Decision Tree model for network intrusion detection system with other existing

machine learning algorithms using the reduced dataset. Most of the ML algorithms on intrusion detection using

#No Rule

1 If src_bytes <= 28 && diff_srv_rate <= 0 && flag = OTH && srv_serror_rate <= 0.03 THEN put class in

anomaly

2 If srv_serror_rate > 0.03 THEN put class in normal

3 If flag = REJ THEN put class in normal

4 If flag = RSTO && dst_bytes <= 1 THEN put class in normal

5 If dst_bytes > 1 && dst_bytes <= 48 && logged_in = 0 THEN put class in normal

6 If logged_in = 1 THEN put class in anomaly

7 If dst_bytes > 48 THEN put class in anomaly

8 If flag = RSTOS0 THEN put class in anomaly

9 If flag = RSTR THEN put class in anomaly

10 If flag = S0 && srv_serror_rate <= 0.55 THEN put class in normal

11 If srv_serror_rate > 0.55 THEN put class in anomaly

12 If flag = S1 THEN put class in normal

13 If flag = S2 THEN put class in normal

14 If flag = S3 THEN put class in normal

15 If flag = SF && dst_bytes <= 3 && src_bytes <= 8 && src_bytes <= 7 && src_bytes <= 5 THEN put class

in anomaly

16 If src_bytes > 5 THEN put class in normal

17 If src_bytes > 7 THEN put class in anomaly

18 If src_bytes > 8 && src_bytes <= 17 THEN put class in normal

19 If src_bytes > 17 && src_bytes <= 27 && src_bytes <= 18 THEN put class in anomaly

20 If src_bytes > 18 && src_bytes <= 20 && src_bytes <= 19 THEN put class in normal

21 If src_bytes > 19 THEN put class in anomaly

22 If src_bytes > 20 THEN put class in normal

23 If src_bytes > 27 THEN put class in anomaly

24 If dst_bytes > 3 && dst_bytes <= 29200 && src_bytes <= 4 && logged_in = 0 THEN put class in normal

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

90

0
20
40
60
80

100
120

V
al

u
e(

%
)

TP FP Accuracy Precision Recall F1 score

the reduced dataset obtained F1-score of at least 75.04% classification rates. The F1-score of HNIDF-NN-DT

on the reduced dataset is better with 99.56% compared to Logistic with the closest score of 95.23%. The results

suggest Random Forest as the least ML algorithm for the classification of intrusions with F1-score of 75.04%.

The outcomes demonstrated that the optimum method for network intrusion detection is HNIDF-NN-DT while

the worst network intrusion detection method is Random Forest across the evaluation metrics using the reduced

dataset. The results showed that the developed HNIDF-NN-DT is an improvement over the other related

methods with TP, FP, accuracy, precision, recall, and F1-score of 98.9, 1.2, 99.42%, 99.54%, 99.56%, and

99.56% respectively compared to the other related methods. Overall, the results demonstrated that the various

ML methods on the reduced dataset for network intrusion detection performed better when compared to their

performances on the full dataset.

Table 6: Performance comparison on reduced dataset

Algorithm TP FP Accuracy Precision Recall F1 score

C4.5 tree 98.4 1.6 96.68 95.43 93.63 94.23

Decision Table 95.1 4.9 90.23 90.44 90.24 90.14

Bagging 98.7 1.3 94.66 94.41 91.51 93.26

KNN 98.6 1.4 91.47 88.43 87.66 88.24

Logistic 94.8 5.2 95.22 95.43 91.43 95.23

Naïve Bayes 92.2 7.8 79.26 77.43 77.24 77.24

Bayesian Logistic

Regression
93.5 6.5 85.35 95.42 90.52 93.53

Naïve Bayes

Multinomial
90.7 9.3 80.06 75.34 74.34 75.35

Multilayer Perceptron 95.2 4.8 94.43 94.53 94.26 94.69

Random forest 98.8 1.2 75.04 75.03 75.02 75.04

HNIDF-NN-DT 98.9 1.2 99.42 99.54 99.56 99.56

Figure 3 shows the graphical representation of the performance rate of each of the methods under

comparison using the full dataset. The graph showed that the F1-score of the developed HNIDF-NN-DT on

the full dataset is better with 98.56% compared to Multilayer Perceptron with the closest score of 94.79%. The

graph also suggests Random Forest as the least ML algorithm for the classification of intrusions with F1-score

of 73.03%. The outcomes demonstrated that the optimum method for network intrusion detection is HNIDF-

NN-DT while the worst network intrusion detection method is Random Forest across the evaluation metrics

using the full dataset. The results showed that the developed HNIDF-NN-DT is an improvement over the other

related methods with TP, FP, accuracy, precision, recall, and F1-score of 98.7, 1.3, 98.42%, 98.54%, 98.56%

and 98.56 respectively. The graph showed that the developed model exhibited highest value of performances

compared to the other models.

Figure 3: Graph of performance comparison on full dataset

Figure 4 shows the graphical representation of the performance rate of each of the methods under

comparison using the reduced dataset. The graph showed that the F1-score of HNIDF-NN-DT on the reduced

dataset is better with 99.56% compared to Logistic with the closest score of 95.23%. The graph also suggests

Random Forest as the least ML algorithm for the classification of intrusions with F1-score of 75.04%. The

graph showed that the optimum method for network intrusion detection is HNIDF-NN-DT while the worst

network intrusion detection method is Random Forest across the evaluation metrics using the reduced dataset.

The graph also showed that the developed HNIDF-NN-DT is an improvement over the other related methods

with TP, FP, accuracy, precision, recall, and F1-score of 98.9, 1.2, 99.42%, 99.54%, 99.56%, and 99.56%

respectively. Overall, the graph demonstrated that the various ML methods on the reduced dataset for network

intrusion detection performed better when compared to their performances on the full dataset.

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

91

Figure 4: Graph of performance comparison on reduced dataset

5. Conclusion

The internet has presented new security challenges which deserve sophisticated mechanisms to avoid

compromising confidentiality and integrity of data. The need to secure Internet applications on the global

networks has become an important task due to the ever-increasing cybercrimes. A common technique for

identifying intrusions in computer networks is the Network Intrusion Detection System (NIDS). Several NIDS

techniques have been developed in the past, but these techniques are still limited in detection accuracy and

error rate. Research has shown that one of the most considered strategies to achieve these sophisticated

techniques is through the application of machine learning algorithms to the problem. Several IDSs have been

proved to lack performance efficiency in detecting new attacks. Intruders find sophisticated and new means to

intrude the privacy of a system. In this study, a Hybrid Network Intrusion Detection Framework using Neural

Network-Based Decision Tree model for network intrusion detection system using the full and reduced datasets

was developed. The study adapted a hybrid feature selection approach to choose the best attributes for NIDS.

In order to automatically construct the rules for intrusion detection, the chosen attributes were trained with a

Neural Network-Based Decision Tree model. The NSL-KDD dataset was used for experimentation and

accuracy, precision, recall and F1-Score were used as metrics for the evaluation of the developed model. The

results showed that the developed HNIDF-NN-DT based on the full dataset is an improvement over the other

related methods with TP, FP, accuracy, precision, recall, and F1-score of 98.7, 1.3, 98.42%, 98.54%, 98.56%

and 98.56 respectively. Similarly, the results showed that the developed HNIDF-NN-DT based on the reduced

dataset is an improvement over the other related methods with TP, FP, accuracy, precision, recall, and F1-score

of 98.9, 1.2, 99.42%, 99.54%, 99.56%, and 99.56% respectively.

References

[1] S. Waskle, L. Parashar and U. Singh, " Intrusion detection system using PCA with random forest approach," in In

2020 International Conference on Electronics and Sustainable Communication Systems (ICESC) , 2020.

[2] S. Ganapathy, K. Kulothungan, S. Muthurajkumar, M. Vijayalakshmi, P. Yogesh and A. Kannan, "Intelligent feature

selection and classification techniques for intrusion detection in networks: a survey.," EURASIP Journal on

Wireless Communications and Networking, pp. 1-16, 2013.

[3] R. Patel, A. Thakkar and A. Ganatra, " A survey and comparative analysis of data mining techniques for network

intrusion detection systems," International Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 1,

pp. 265-260, 2012.

[4] A. Kajal and S. K. Nandal, "A hybrid approach for cyber security: improved intrusion detection system using Ann-

Svm.," Indian Journal of Computer Science and Engineering, , vol. 11, no. 4, pp. 325-412, 2020.

[5] F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery and N. Yazdani, "Mutual information-based feature selection for

intrusion detection systems.," Journal of network and computer applications, vol. 34, no. 4, pp. 1184-1199,

2011.

[6] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández and E. Vázquez, " Anomaly-based network intrusion

detection: Techniques, systems and challenges," computers & security, vol. 28, no. 1-2, pp. 18-28., 2009.

0

20

40

60

80

100

120

V
al

u
es

 (
%

)

TP FP Accuracy Precision Recall F1 score

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

92

[7] I. Martins, J. S. Resende, P. R. Sousa, S. Silva, L. Antunes and J. Gama, "Host-based IDS: A review and open issues

of an anomaly detection system in IoT," Future Generation Computer Systems, vol. 133, pp. 95-113., 2022.

[8] A. Heidari and M. A. Jabraeil Jamali, " Internet of Things intrusion detection systems: a comprehensive review and

future directions," Cluster Computing, vol. 26, no. 6, pp. 3753-3780, 2023.

[9] O. H. Abdulganiyu, T. A. Tchakoucht and Y. K. Saheed, " Towards an efficient model for network intrusion detection

system (IDS): systematic literature review," Wireless Networks, vol. 30, no. 1, pp. 453-482, 2024.

[10] F. E. Ayo, J. B. Awotunde, S. O. Folorunso, R. Panigrahi, A. Garg and A. K. Bhoi, " Bot-FFX: A Robust and Efficient

Framework for Fast Flux Botnet (FFB) Detection," Wireless Personal Communications, pp. 1-24, 2024.

[11] M. Saied, S. Guirguis and M. Madbouly, " Review of artificial intelligence for enhancing intrusion detection in the

internet of things," Engineering Applications of Artificial Intelligence , vol. 127, p. 107231, 2024.

[12] F. E. Ayo, L. A. Ogundele, S. Olakunle, J. B. Awotunde and F. A. Kasali, " A hybrid correlation-based deep learning

model for email spam classification using fuzzy inference system," Decision Analytics Journal, vol. 10, p.

100390., 2024.

[13] K. Akyol and Ü. Atila, "A study on performance improvement of heart disease prediction by attribute selection

methods," Academic Platform-Journal of Engineering and Science, vol. 7, no. 2, pp. 174-179, 2019.

[14] F. E. Ayo, S. O. Folorunso, A. A. Abayomi-Alli, A. O. Adekunle and J. B. Awotunde, " Network intrusion detection

based on deep learning model optimized with rule-based hybrid feature selection.," Information Security

Journal: A Global Perspective, vol. 29, no. 6, pp. 267-283, 2020.

[15] E. Alpaydin, Introduction to machine learning., MIT press., 2020.

[16] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu and C. Wang, "Machine learning and deep learning methods for

cybersecurity.," Ieee access, vol. 6, pp. 35365-35381, 2018.

[17] B. Ingre, A. Yadav and A. K. Soni, "Decision tree-based intrusion detection system for NSL-KDD dataset," in In

Information and Communication Technology for Intelligent Systems (ICTIS 2017), ., 2018.

[18] C. Azad and V. K. Jha, "Genetic algorithm to solve the problem of small disjunct in the decision tree-based intrusion

detection system," International Journal of Computer Network and Information Security, vol. 7, no. 8, pp. 56-

71, 2015.

[19] M. A. Khan, M. A. Khan, S. U. Jan, J. Ahmad, S. S. Jamal, A. A. Shah and W. J. Buchanan, " A deep learning-based

intrusion detection system for MQTT enabled IoT," Sensors, vol. 21, no. 21, p. 7016, 2021.

[20] I. S. Thaseen, B. Poorva and P. S. Ushasree, "Network intrusion detection using machine learning techniques," in In

2020 International conference on emerging trends in information technology and engineering (IC-ETITE) ,

2020.

[21] A. A. Salih and A. M. Abdulazeez, " Evaluation of classification algorithms for intrusion detection system: A

review," Journal of Soft Computing and Data Mining, vol. 2, no. 1, pp. 31-40, 2021.

[22] S. &. B. A. Choudhury, "Comparative analysis of machine learning algorithms along with classifiers for network

intrusion detection (ICSTM).," in In 2015 International Conference on Smart Technologies and Management

for Computing, Communication, Controls, Energy and Materials, 2015.

[23] A. M. Mahfouz, D. Venugopal and S. G. Shiva, " Comparative analysis of ML classifiers for network intrusion

detection," in In Fourth International Congress on Information and Communication Technology: ICICT 2019,

London, 2020.

[24] S. M. Kasongo and Y. Sun, " A deep learning method with wrapper-based feature extraction for wireless intrusion

detection system," Computers & Security, vol. 92, p. 101752, 2020.

[25] Y. Zhou, G. Cheng, S. Jiang and M. Dai, " Building an efficient intrusion detection system based on feature selection

and ensemble classifier," Computer networks, vol. 174, p. 107247, 2020.

[26] A. Halimaa and K. Sundarakantham, " Machine learning based intrusion detection system," in In 2019 3rd

International conference on trends in electronics and informatics (ICOEI) , 2019.

[27] B. S. Bhati and C. S. Rai, "Analysis of support vector machine-based intrusion detection techniques," Arabian Journal

for Science and Engineering, vol. 45, no. 4, pp. 2371-2383, 2020.

[28] N. Bindra and M. Sood, " Detecting DDoS attacks using machine learning techniques and contemporary intrusion

detection dataset," Automatic Control and Computer Sciences, vol. 53, no. 5, pp. 419-428, 2019.

[29] W. L. Chu, C. J. Lin and K. N. Chang, " Detection and classification of advanced persistent threats and attacks using

the support vector machine," Applied Sciences, vol. 9, no. 21, p. 4579, 2019.

[30] J. Kim, Y. Shin and E. Choi, " An intrusion detection model based on a convolutional neural network," Journal of

Multimedia Information System, vol. 6, no. 4, pp. 165-172, 2019.

[31] R. Patgiri, U. Varshney, T. Akutota and R. Kunde, "An investigation on intrusion detection system using machine

learning," in In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) , 2018.

[32] K. A. Taher, B. M. Y. Jisan and M. M. Rahman, "Network intrusion detection using supervised machine learning

technique with feature selection," in In 2019 International conference on robotics, electrical and signal

processing techniques (ICREST) , 2019.

[33] H. Xu, K. Przystupa, C. Fang, A. Marciniak, O. Kochan and M. Beshley, " A combination strategy of feature selection

based on an integrated optimization algorithm and weighted k-nearest neighbor to improve the performance of

network intrusion detection," Electronics, vol. 9, no. 8, p. 1206, 2020.

Iraqi Journal for Applied Science (IJAS)

A Hybrid Network Intrusion Detection Framework using Neural Network-Based Decision Tree Model

(Femi Emmanuel Ayo)

93

[34] A. Yulianto, P. Sukarno and N. A. Suwastika, "Improving adaboost-based intrusion detection system (IDS)

performance on CIC IDS 2017 dataset," in In Journal of Physics: Conference Series, 2019.

[35] A. A. Aburomman and M. B. I. Reaz, " A novel SVM-kNN-PSO ensemble method for intrusion detection system.,"

Applied Soft Computing, vol. 38, pp. 360-372, 2016.

[36] L. Haripriya and M. A. Jabbar, " Role of machine learning in intrusion detection system," in In 2018 second

international conference on electronics, communication and aerospace technology (ICECA), 2018.

[37] N. Ashraf, W. Ahmad and R. Ashraf, " A comparative study of data mining algorithms for high detection rate in

intrusion detection system.," Annals of Emerging Technologies in Computing (AETiC), pp. 2516-0281, 2018.

[38] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri and M. Rida, " A novel architecture combined with optimal

parameters for back propagation neural networks applied to anomaly network intrusion detection," Computers

& Security, vol. 75, pp. 36-58, 2018.

[39] V. Hajisalem and S. Babaie, " A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and

anomaly detection," Computer Networks, vol. 136, pp. 37-50, 2018.

[40] W. L. Al-Yaseen, Z. A. Othman and M. Z. A. Nazri, " Multi-level hybrid support vector machine and extreme

learning machine based on modified K-means for intrusion detection system," Expert Systems with

Applications, vol. 67, pp. 296-303, 2017.

[41] W. C. Lin, S. W. Ke and C. F. Tsai, " CANN: An intrusion detection system based on combining cluster centers and

nearest neighbors," Knowledge-based systems, vol. 78, pp. 13-21, 2015.

[42] N. Maharaj and P. Khanna, " A comparative analysis of different classification techniques for intrusion detection

system," International Journal of Computer Applications, vol. 95, no. 17, 2014.

[43] P. Ghosh, C. Debnath, D. Metia and R. Dutta, " An efficient hybrid multilevel intrusion detection system in cloud

environment," IOSR Journal of Computer Engineering, vol. 16, no. 4, pp. 16-26, 2014.

[44] P. Jongsuebsuk, N. Wattanapongsakorn and C. Charnsripinyo, " Network intrusion detection with fuzzy genetic

algorithm for unknown attacks.," in In The International Conference on Information Networking 2013

(ICOIN), 2013.

[45] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat and S. Venkatraman, " Deep learning

approach for intelligent intrusion detection system," Ieee Access,, vol. 7, pp. 41525-41550, 2019.

[46] A. Mahindru and A. L. Sangal, "MLDroid—framework for Android malware detection using machine learning

techniques," Neural Computing and Applications, vol. 33, no. 10, pp. 5183-5240, 2021.

[47] S. Baek, J. Jeon, B. Jeong and Y. S. Jeong, "Two-stage hybrid malware detection using deep learning," Human-

centric Computing and Information Sciences, vol. 11, no. 27, pp. 10-22967, 2021.

[48] H. Bakır and R. Bakır, " DroidEncoder: Malware detection using auto-encoder based feature extractor and machine

learning algorithms," Computers and Electrical Engineering, vol. 110, p. 108804, 2023.

[49] F. Khan, C. Ncube, L. K. Ramasamy, S. Kadry and Y. Nam, "A digital DNA sequencing engine for ransomware

detection using machine learning," IEEE Access, vol. 8, pp. 119710-119719, 2020.

[50] G. Ciaramella, G. Iadarola, F. Martinelli, F. Mercaldo and A. Santone, "Explainable ransomware detection with deep

learning techniques," Journal of Computer Virology and Hacking Techniques, vol. 20, no. 2, pp. 317-330,

2024.

[51] A. A. Almazroi and N. Ayub, " Deep learning hybridization for improved malware detection in smart Internet of

Things," Scientific Reports, vol. 14, no. 1, p. 7838, 2024.

[52] A. Brown, M. Gupta and M. Abdelsalam, " Automated machine learning for deep learning-based malware detection,"

Computers & Security, vol. 137, p. 103582, 2024.

[53] M. A. Talukder, K. F. Hasan, M. M. Islam, M. A. Uddin, A. Akhter, M. A. Yousuf and M. A. Moni, "A dependable

hybrid machine learning model for network intrusion detection," Journal of Information Security and

Applications, vol. 72, p. 103405, 2023.

[54] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani, " A detailed analysis of the KDD CUP 99 data set," in In 2009

IEEE symposium on computational intelligence for security and defense applications, 2009.

