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1. INTRODUCTION
Numerous manufacturing processes, including the aerodynamic extrusion of paper production,

plastic sheets, the drawing of plastic films, glass fiber, the cooling of metallic sheets in a cooling bath, and
polymer sheets extruded continuously from a die, are illustrations of real-world uses for moving surfaces.
Therefore, investigations of fluid dynamics problems are crucial.Nonlinear differential equations are a well-
established mathematical topic, and their methodical development dates back to the early years of calculus's
development. In heat transfer, boundary layer theory, and chemical reaction modeling, numerous scientific
and technological issues are expressed as linear or nonlinear boundary value problems of second- and third-
order ODEs with different kinds of boundary conditions. An incompressible electrically conducting fluid's
steady hydromagnetic flow over an inclined stretching sheet [2] and the problem of a boundary layer flow
over an unsteady stretching sheet in the presence of heat transfer and a Hall effect over the stretching surface
[3] are two problems that are considered in this work. The extending surface and surrounding fluid move
synchronously in various real-world situations. This includes applications such as cooling polymer sheets or
films, cylinders, metallic sheets, etc. An exact solution is essential because the underlying differential
equations controlling fluid motion in hydrodynamics contain a nonlinear component. It becomes challenging,
if not impossible, to find the closed-form solutions. Consequently, most studies aim to approximate the
solution. These kinds of issues have been researched and solved by numerous researchers, including [6], [8],
[11], and [13]. Spectral approaches use global approximation functions (like high-order polynomials or the
Fourier series) to describe the variable fields [7]. The spectral methods are thought to be the most precise
approximation for smooth solutions due to their exponential convergence rate. Because computer memory
was costly in the early days of CFD, spectral approaches were therefore frequently used in simulations.
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The spline interpolation method for numerical analysis has been the subject of extensive research
over the last few decades. To solve differential equations, several authors use spline techniques like [8], [17],
and [18]. The quasi-linearization technique has gained popularity recently as a means of studying nonlinear
problems [4]. This study solves heat transfer, hydromagneto dynamics, and boundary layer fluid flow
problems, which are expressed as a system of nonlinear ordinary differential equations, by using a multi-step
spline-quasi polynomial collocation and provides convergence analysis and numerical and graphical results.

1. MATERIAL AND METHODS:

In this section an ordinary equation of order n is considered that is given in the form Eq. (1) where
n = 2,3. the procedure of constructing the solution algorithm for a single equation is shown in the upcoming
subsections.

T [v, v, ...,V(n)] =g X € (a,b) ()]

Here T acting on v and its first n derivatives as a nonlinear operator, v = v(x) is the unknown function, and
g(x) is any given function of x. The ODE Eq. (1) is solved subject to the given boundary conditions at x = a
and x = b, that are represented as.

1zt agv® (@) = wy s=12,..,m, )

n3Bv@(b) = wy,, r=12,..,m,

@)

Where oy and P, are the constant coefficients of z-th ordinary derivative and w, 5, wy, 5 are constants v (x),
Also m, and my, indicate the number of boundary conditions prescribed at x = a and x = b respectively. The
method incorporates the steps described below.

2.1 The quasi-linearization method

Firstly, the nonlinear ODE is linearized using the quasi-linearization method (QLM) of bellman and Kalaba
[4], using (QLM) for Eq. (1), we get.

oo MOV = Ri(x) 4)

a
Where e (X) = RO (Tk) [vl,vl’,vl”, ,vl(n)] , k=012, ..n
A%
1

n
Jt 1o k
Ri(x) = gx) + ZW [vi, v],v{', ... ,vl(n)]vl( ) _ T[vy, v, v, ... ,Vl(n)]
] ov,

Here 1 = 1,2,3 ..., shows the iteration stage, beginning with an initial approximate solution v, that is found
from the boundary conditions Eq. (2,3), The QLM scheme is used to solve Eq. (4) iteratively until the
required accuracy tolerance is obtained.

2.2 Spectral collocation

The spectral quasi-linearization method is implemented on the linearized QLM scheme Eqg. (4) as shown
above, the approximate solution is assumed to be a polynomial of degree N + n.

v(x) = V() = ZREy X" ()

where n is order of the ODE and the domain [a, b] is partitioned to N subintervals so that we have N + 1
collocation points and c,s are constants to be determined.

2.3 Spline Interpolation

The linearized ODE in Eq. (4) is solved using the proposed model in Eq. (5), the values of

Vi, Vi, we) Vi(n) are obtained at each x;, these accurate approximated values are used to refine the solution using

the spline model illustrated below.
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_ br(x—x;)" n+1 As(x— x)(s)
S12n+1(X) n: - ,1 +anr+1—+1 > s!

(6)
Where X € [x;, X;;1] and ag are unknowns to be determined. To find the values of ag we substitute x with
X; so that.

S(2n+1(xl) = V ) wherer = 0,1, .

(r)
\'A . . . .
We get b, = ﬁ then we use Taylor series expansion around x; for v,v’, ..., v(™ and substitute x with x;,; so

that.

S(2n+1(X1+1) 1(?1 ()

Different polynomial spline models of various degrees are used depending on the order of the ODE in Eq. (4)
as shown in the next subsection.

2.3.2 Construction of Quintic Spline.
Here we consider an ODE in Eq.(1) where n = 2, we construct a polynomial spline of degree five where

yi,yi and yi’ are accurate approximations for vj,v{ and v;', using continuity conditions for splines the
following model can be derived.

Sis(0) = cip(x —x)% + ¢i1 (x —x)* + ¢ (x — x))® + y71 x—x)? +yi(x—x;) +y; ®)
Using continuity conditions in Eq.(7), the unknowns ¢;q,cj; and c;, are found by solving the system of

equations below.

! hz 12
h%c;, + h*c;; + h3cio = yi41 — yi — hyj — 2 Vi )
Sh*c;, + 4h%c;y + 3h%c; o = yi,; —yi — hyy’ (10)
20h3c;, + 12h%c;; + 6hcio = yit, — Vi’ (11)

As a result, we obtain.
2hs[ 12 12 -6 -6 —1 1]*Y,, ¢y = 2h4
and ¢ = [20 20 —12 -8 -3 1]=*Y,, where

—[Yi vier hyi hyi, by hZyi]" (12)

Ciz2 [30 =30 16 14 3 -=2]*Y,

1.3.3 Construction of Septic Spline.

Here we consider an ODE in Eq.(1) where n = 3. We aim to construct a polynomial spline of degree seven
where y;,yi,yi" and yi(3)are accurate approximations for v;, v{, v{’ and vi(3). Using continuity conditions for
spline functions, the following model can be derived.

3) "
Si7(x) = bis(x —%;)7 + bj,(x — x;)® + b; 1 (x — x;)® + bio(x —x)* + yiT x—x)°+ yj’ x—x;)%+
yix—x) +y; (13)

Using continuity conditions for Eq. (13), the unknowns b; ¢, b; 1, b;, and b; ;3 are found by solving the system
of equations below.

! hz n
Wby + hoby, + hSbyy + h*byg = yi4y — y; — hyl — Tyt =Ty (14)

7h®b; 3 + 6h°b; , + 5h*b; , + 4h3b; o = yi,; —yi — hy]’ — yf3> (15)
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42h5b; 5 + 30h*b;, + 20h3b; ; + 12h%b;, = yiiy — yi' — hy® (16)
210h*b;; + 120h3b; , + 60hZb;; + 24hb; o = y&) — y® (17)
We get bis =—=[120 —120 60 60 12 —12 1 1]*Ys,

6h7

bi,zzﬁ—;[—ztzo 420 -216 —204 —45 39 —4 —3]*Ys,

b, =--[168 —168 90 78 20 —14 2 1]*Ys; and
1
bio=5[-210 210 —120 —90 -30 15 4 1]+Y
Where Y; = [yi yis1 hy} hyl, h2y! b2yl b3y® ny @ (18)

2. CONVERGENCE ANALYSIS

In this part the validity and accuracy of the proposed spline models are assessed. Firstly, we prove some
lemmas by finding the error bounds of the coefficients in Eq. (12,18) and check the convergence of the
proposed models in equations (8,13) by proving error bound theorems, Similar to some previous efforts that
examined the convergence of some types of spline functions [10], and [17].

Lemma 3.1:Let y;(x) be spline polynomial interpolation of a function y(x) on the interval [x;, x;, ] using
y(x) € C®[0,1], then the following inequalities hold.

|3+ @) eig =y <1379 (agy®@ (&) + By P (&) + 0y @ (&),
where &3, 8,8 € (Xi,Xi41),
=10 = —%,0(0 =%'Bz =-3,B; =1_§'Bo = _év‘Pz = g"Pl =—-1,¢, =é forq=10,1,2.
Proof. Using Taylor series expansion for y € C®[0,1], about x; and the results from Eq. (12)
We get |5, —yi| <3 (2@ (&) — 6y (&) + 57O (),

j1c,; —yi'| <2 (=5y©(E) + 1459 ;) — 10y O (&),

And [31c o — yi'| < - (10y© (&) - 24y© (&) + 15y (5y) )

Theorem 3.2: Let S;(x) be spline polynomial interpolation which satisfies Eq. (7), where r = 0,1,2 and y €
C®[0,1], such that x € (x;, X1 ) and h = (x;4; — X;), then

v = S (x)| < Cgh* 9w (y®,h)

1 1 1 23 21
WhereCO —%,Cl —a,CZ —E,C3 —a,cz; —R,Cs —4,

and C, = 1, whereq=0,1,2,3,4,5,6.

Proof. Using Taylor series expansion for y € C¢[0,1], about x; and Lemma 3.1, then we get

y760 - Sis] = By @G -y O] < To(y©;h)
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[y’ 60 = {500 = 2y &) —y©O €| < T w(y@;h)
"GO = S{500] = 2y © (€) — y©O(E)] < 2 wo(y®;h)
y® ) - sE 0] = - [10y9 (5 — 36y @ (8) + 45y D (&) — 20y O (E&)] < - w(y©@; h)
Y900 = SP| =2 [5y@ () — 16y (E) + 157D (&) — 5y@(E)] < 2 o(y®; h)
YO0 - 5P| = 22y (&) - 6yP (&) + Sy P (&) — 29O (€] < 4h(y®; h)
YO - SP®| < oy®;h)

Lemma3.3: Let y;(x), be spline polynomial interpolation of a function y(x) on the interval [x;, x;,, | then
|4+ reig =y < 049 (agy@(ED + By P (&) + 9qy @ (&) + 0 iy O E)),

where &, 85,83, &5 € (X, Xi41),

5 35 21 35 34 39

Oy =— 0o =—, 00 = —,0f = — :10 —_ == - 27
3 2’2 7 g1 gs’ 0 1680'83 B2 7 B 41
91 49 1

1 23
E;(P1 = _E,(Po =E @3 =7,®2 = —3,®1 =;,®0 =%,forq=o,1,2,3.

3
Bo=——

41

@3 =—14,¢, =

Proof. Using Taylor series expansion for y(x) € C®[0,1], about x; and the results from Eg. (18), we have
7tb;5 =y <7 (=5y® (6 + 20y @ (E,) — 28y (5) + 14y ®E))
J61bi2 — 7% <2 (355 50 — 136y @ E,) + 182(5,) — 84y )
[51bis —y®| < I (~21y® () + 78y (&) — 98y P (&) + 42y P (5y) )

[41by5 — yP] < - (357 (&) — 120y @ (&) + 140y (&) — 56y (E,))

1680

Theorem 3.4: Let S;(x) be spline interpolation which satisfies Eq.(7), where r = 0,1,2,3 and y € C2[0,1],
such that x; < x < Xj41 and h = (x;,; — X;), then

arey _ (@ 8-q, .(+(8) 1 1 -1 - — 385
1}7,5()() Sz = Bqh m(y h) where By = 40320’ 5040’B2 720'B3 * 74 T 1680’

120
2 By =2"andB, ==,By =1, and =0, 1,2,3,4,5,6,7, 8.

84

1= Bs =

Proof. Using Taylor series expansion for y € C8[0,1], about x; and Lemma 3.3, then we obtain.

v 60 - 851 = Fly PG -y < Foly®in)
') = S{,00] = 2 [y® (&) — yO ()| < T wo(y®; h)
hé

ly"" () = S{7 ()| = |y(8)(23) —yOE)| < S w(y®;h)

P =570 =Sy E) - yO )] < S o(y®;h)
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h4

—[ =35y (&) + 160y (&) — 280y P (&;) + 224y ® (8,) — 70y P (&) <

Y@ -sP )| =

31865811)4 (D(y(G)’ h)

YO0 - SE 00| = 2|21y ® (&) + 90y (&) — 140y (55) + 84y (&) — 14y®(&5)| <

17854h4 o (y(G); h)

hZ
YO =S5 (0] = = |-35y® (&) + 144y ®)(&,) — 210y (&) + 112y (5,) — 14y® (&5)| <

25298h2 m(y ®, h)

h
Y =S5 (0] = 2|-5y® &) + 20y (&) — 28y (&) + 14y (&) — 2y® (&)| <
35h
~ o(y®;h)
| OJ¢ )_S_(8) |= ( (8).h)
y X 1,7 (X) w y ’
3. NUMERICAL EXPRIMENTATION

In this part, we consider some boundary layer problems that can be defined on truncated domain, the
aim of this section is to show the accuracy and validity of our developed method.

Example 1. A problem of a laminar two-dimensional steady boundary layer flow of an incompressible
viscous dusty fluid over a vertical stretching sheet is considered. The governing equations are written in
similarity form in [2] as.

f3 4+ ff" — f'? 4 G.cosy® — Qf' = 0, (19)
0" + P.fo' — P.mf’6 + P.Mf'? + P.E.f"* = 0, (20)
The boundary conditions are given by
f'(0) =1, £f(0) = 0,6(0) = 1,8(0) =0, f'(0) =0 (21)
Applying QLM we get.

(3)
f1+1

+ flf1’1’L1 + [-2ff - Q]f1’+1 + f{"fi41 + GrcosyBy,, = f'fj — 1’2 (22)

eﬁ—l + Prfle{+1 + [_prmfl,]el+1 + [Zprchl”]fl,il + [_Prmel + 21:'erl]fl’+1 + I)rel’fl+1 =
P.Mf/*+P.Mf/"* + P.m6,f + P,6;f; (23)

Subject to the boundary conditions fi,,(0) = 0,f,;(0) =1,0;,,,(0) = 1,f{,,(0) = 0,8,,,(0) =0 (24)

In this system of ODE, the accuracy of the scheme is examined by evaluating the residual error at the present
iteration (1 + 1), which can be described as.

Resg = |Fiy1lw, Resg = [0141]c, Where Fiyy =3, + fi ffh; — f’12+1 + Gycosy6;; — Qff;,, and
Ore1 = 841 + Pfis16], 1 — Prmfyy; 0,44 + PM(f),)? + BEf},” (25)

Additionally the scheme is said to be convergent if [fi,; —fi| <& 6,41 — 6,]0 <Eg, VI > L, for some
chosen tolerances €; and €q.

Example 2. Lastly, we consider the boundary layer flow over an unsteady stretching sheet in the presence of
the Hall effect and heat transfer over a stretching surface; the existing systems are expressed in their non-
dimensional form by EL-Aziz [3] as
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£+ 17— (02—~ A(F +2) - o mh +£) =0 (26)
b +fh' = f'h— A(h+2h') + =" (mf' +h) =0 @7)
-0 +f6' — 2f'0 —2(39 +x0) =0 (28)
Dependent on the boundary conditions
£(0) =0, £'(0) =1, h(0) =0, 8(0) =1, f'(c0) =0, h(e0) =0, 8(c0) =0 (29)

In this problem, f’(x), h(x) and 6(x) are unknown functions of that are representing the transverse velocity,
the dimensionless temperature, and the axial velocity, respectively; mis the Hall Effect parameter, the
unsteadiness parameter is A, the Prandtl number is Pr, and lastly, M is the magnetic parameter.

The QLM scheme for the governing system of the ODEs Eq. (26-29), is given by

A n ! M ! rn M rerr r
60+ (6= 2) iy + (—A— 26 = ) By + £y — o by = £ — (30)
M ’ ’ " A ’ ’ M ’ ’
(_hl + —1Tm2) fier +yfieg +hyyy + (fl - 7X) hyy, + (_Zfl —A- —1+m2) hy ., = fiby —fih (31)
’ I PN A ' f 3A f ,
~201fyy + Oy + o014y + (f =) 0,y + (=26 —2) 0141 = 6] — 26, (32)

The boundary conditions are given below as
fi1(0) =0, £4,(0) = L, hy;;1(0) =0, 6,4,(0) =1, f{;;() =0,h;1(0) =0,014,(0) =0 (33)

Similarly to the previous examples, the validity and precision of the iterative system in Eq. (30-33) are tested
through residual error analysis at the present iteration 1 + 1 and are described as follows.

Resg = |Fi41]0, Resy = |Hi41]le @Nd Resg = |64 | oWhere

M

Fien = 65 + fiaafips = (Fen)” = A(fay +360) = o (g +mby), (34)
" ! ! X7 M '
Hl+1 = hl+1 + fl+1hl+1 - f1+1hl+1 —A (hl+1 + Ehl+1) + m(hlﬂ + mf1+1) (35)
1 12 I ! A !
el+1 = Eel+1 + f1+191+1 - 2fl+191+1 Y (391+1 + Xe1+1) (36)

Additionally the scheme is said to be convergent if |fi,; —fj| <€ 10141 — 6;] <E€g and |hy,; — hy| <
€, V1 > L, for some chosen tolerances €, €;, and €g .

4, Numerical results and discussions

In this part, to solve the linear iterative equations Eq. (22-24) and Eq. (30-33), the solutions are
approximated using smooth polynomial spline segments. The residual error is computed for each nonlinear
operator at each iteration to demonstrate the convergence and efficacy of our method. In Table (1), the
residual error for Eq. (22-24) is evaluated for three iterations. Also in Table (2), the residual errors of Eq.
(30-33) are evaluated for 5 iterations given in Eq. (34-36); hereafter, comparing the results with [9].
Additionally, to examine the convergence and the stability of our proposed method numerically, the infinity
norm is computed. Table (3) and Table (4) show that the iterative method in Eq. (22-24) and Eqg. (30-33)
converges after 6 or 7 iterations. Figure (1-4) discusses the changes in velocity profile f'and non-dimensional
temperature 6 in Eq. (19-21) under the influence of the magnetic parameter M, the Prandtl number Pr, the
angle of inclination y, the Chandrasekhar number Q, and the Eckert number Ec. In Figure (1), a decrease in
values of 0 is observed when the values of M and Pr increase. Figure (2) shows that increasing the values of
y and Q leads to an increment in f'.
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However, Figure (3) suggests that raising the values of Q and y results in an increment in the first
section of ® domain and a decrease in the values of 8 in its second section. It is also noticeable from Figure
(4) that the values of f’and 6 vary directly with Ec. Figure (5-8) shows the variation of axial velocity f,
transverse velocity h, and non-dimensional temperature 6 in Eq. (26-29) under the effect of the magnetic
parameter M, the Prandtl number Pr, the Hall effect parameter A, and the unsteadiness parameter m. From
Figure (5), it is observable that increasing the value of Pr and the Hall effect parameter A results in a
decrease in the dimensionless temperature 6. Also, raising the values of the Hall effect parameter A leads to a
significant decline in the values of f’and h, which can be seen in Figure (6). In Figure (7) it can be noticed
that by increasing the values of the unsteadiness parameter m, the values of f’ also increase, but raising the
values of the magnetic parameter M results in an increment in the values of f’ Lastly, it can be seen from
Figure (8) that increasing the values of the unsteadiness parameter m decreases the values of h, and raising
the values of the magnetic parameter M causes a significant increment in h values.

Table 1. Residual error analysis of Spline approximations in Example 1 on the finite domain [0,1] using Q = 0.8, G, =
5vy=60°m=1M=1P. =1andE.=1

| traon . Residualeror |
L |Fit1le,N =8 8141, N = 8
1 2.2932815e-002 5.0869839e-001
2 2.5396168e-007 2.1834309e-006
3 2.6413052e-017 4.1447793e-016

Table 2. Comparison of the residual error for Eq. (30-33) in Example 2 between the present work and [9].

Iteration [Fii1loo ‘
L [9] Present work
1 3.75070e-001 1.00974e+00
2 3.58227e-002 2.45008e-002
3 2.58387e-004 3.61489¢-006
4 1.01330e-008 3.48240e-014
5 3.09963e-012 1.99649¢-030

Iteration [Hi1loo
L [9] Present work
1 5.67287e-002 2.19961e-002
2 9.17907e-004 9.09012e-004
3 2.26789e-005 2.48135e-007
4 1.70642e-009 3.56051e-015
5 1.16504e-013 2.82517e-031

Iteration 1814110
L [9] Present work
1 5.11974e-002 2.32423e-001
2 1.56959¢-002 5.25913e-003
3 3.87065e-004 1.16030e-006
4 6.96569e-008 1.82589¢-014
5 5.87419¢e-013 1.77721e-030

Table 3. Numerical Convergence analysis of Spline approximations using 11 points (N = 10) for Eg. (19-20) in

Example 1.
. teraion ________________ ___ ____ AbsoluteEror |
L fivs — fileo 18141 — 81leo
1 2.321519e-02 8.132948e-02
2 5.769752e-05 4.283432e-04
3 7.453655e-10 9.448256e-09
4 1.650832e-19 4.917336e-19
5 1.102026e-39 2.589761e-38
6 5.510130e-40 3.673420e-40
7 7.346840e-40 3.673420e-40
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Table 4. Numerical Convergence analysis of Spline approximations using 11 points (N = 10) for Eqg. (26-29) in
Example 2.
Iteration Absolute Error |
1 fi+1 — filo [hjy1 = hyle [6141 — B1leo
1 1.359112e-02 2.255401e-02 1.072987e-01
2 6.323724e-02 4.904691e-03 2.078343e-02
3 6.185082¢-04 8.483846¢-05 3.509774e-04
4 5.398827e-08 1.103315e-08 5.164501e-08
5 3.832820e-16 1.072942¢-16 6.102415e-16
6 1.850823e-32 6.788643e-33 4.871858e-32
7 5.510130e-40 7.461634e-41 3.673420e-40
8 4.,591775e-40 9.183550e-41 3.673420e-40
1 T T T T T 1 T T T T T
ool S NN
0.8 08 \\\\
0.7 07+ \i
06 4 06
Eost 1Eo0st
0.4 . 04
03 X 1 o3l
AN
0.2 p 4 02 \\\} )
01f 4 01p
DO Ofl 072 073 0‘.4 0‘5 0‘6 0‘7 U‘E 0{9 1 0D Dfl 0‘2 0‘3 Did 075 DIG 0‘7 0‘8 Dig 1
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Figure 1. The change of temperature 8(n) profile under the effect of magnetic parameter M and Prandtl number Pr, when M = 1,1.5,2
and Pr = 0.6,0.8, 1.
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and Q = 0.3,0.6,0.8.
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Figure 3. Effect of y the angle of inclination and Chandrasekhar number Q on the temperature profile 6(n), when y = 30°,45°, 60°, and
Q =0.3,0.6,0.8.
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Figure 4. Influence of Eckert number Ec on non-dimensional f’ (1)) velocity and temperature 8(n) profile for Ec = 1, 2, 3.
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Figure 5. Variation of temperature profile 8(n) under the influence of Prandtl number Pr and the Hall effect parameter A for A =

0,0.5,1,1.5and Pr = 0.5,0.72,0.8, 1.
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Figure 6. Graphical representation of the transverse velocity h(n) and axial velocity f'(n) profile under the influence of the Hall effect
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5. CONCLUSIONS

This paper presents an effective numerical technique for solving nonlinear boundary layer flow problems
using spectral spline collocation schemes, which are introduced together with the use of the quasi-
linearization method, and the solution curve is spatially interpolated using the functions in the Matlab
program. We obtain the maximum errors between each pair of consecutive iterative solutions, and residual
errors are computed. The numerical approach shown in the Table (1-4) at the uniform points with respect to
the step size h, and comparing the scheme suggested the method to others already established in the literature
[2] [3] [9]. It offers sufficient precision and is innovative. Additionally, two numerical cases have been
examined utilizing the spectral spline approach, and graphs show the accuracy and practicality of the
approach. Finally, we strongly advise applying comparable multi-step techniques to solve fluid dynamic
issues by utilizing spectral methods and different spline functions.
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