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In this work we present a multi-step algorithm with high accuracy to solve 

nonlinear second- and third-order ODE problems in fluid dynamics. In this 

method we use the polynomial spectral collocation method to acquire 

accurate numerical values at the collocation points, followed by spline 

interpolation to improve the approximated solution between the collocation 

points. Also, we derived quintic and septic polynomial spline models and 

computed the associated error bounds with a convergence analysis. To 

demonstrate the application of the present method, we considered two cases 

of fluid dynamics problems. We also looked at the numerical solution's 

validity and convergence in each example, which are assessed by calculating 

the infinity norm of the absolute and residual errors at every iteration level. 

Lastly, we illustrate the effect and influence of the physical parameters over 

velocity and temperature profiles through graphical results. 
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1. INTRODUCTION 

Numerous manufacturing processes, including the aerodynamic extrusion of paper production, 

plastic sheets, the drawing of plastic films, glass fiber, the cooling of metallic sheets in a cooling bath, and 

polymer sheets extruded continuously from a die, are illustrations of real-world uses for moving surfaces. 

Therefore, investigations of fluid dynamics problems are crucial.Nonlinear differential equations are a well-

established mathematical topic, and their methodical development dates back to the early years of calculus's 

development. In heat transfer, boundary layer theory, and chemical reaction modeling, numerous scientific 

and technological issues are expressed as linear or nonlinear boundary value problems of second- and third-

order ODEs with different kinds of boundary conditions. An incompressible electrically conducting fluid's 

steady hydromagnetic flow over an inclined stretching sheet [2] and the problem of a boundary layer flow 

over an unsteady stretching sheet in the presence of heat transfer and a Hall effect over the stretching surface 

[3] are two problems that are considered in this work. The extending surface and surrounding fluid move 

synchronously in various real-world situations. This includes applications such as cooling polymer sheets or 

films, cylinders, metallic sheets, etc. An exact solution is essential because the underlying differential 

equations controlling fluid motion in hydrodynamics contain a nonlinear component. It becomes challenging, 

if not impossible, to find the closed-form solutions. Consequently, most studies aim to approximate the 

solution. These kinds of issues have been researched and solved by numerous researchers, including [6], [8], 

[11], and [13]. Spectral approaches use global approximation functions (like high-order polynomials or the 

Fourier series) to describe the variable fields [7]. The spectral methods are thought to be the most precise 

approximation for smooth solutions due to their exponential convergence rate. Because computer memory 

was costly in the early days of CFD, spectral approaches were therefore frequently used in simulations.  
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The spline interpolation method for numerical analysis has been the subject of extensive research 

over the last few decades. To solve differential equations, several authors use spline techniques like [8], [17], 

and [18]. The quasi-linearization technique has gained popularity recently as a means of studying nonlinear 

problems [4]. This study solves heat transfer, hydromagneto dynamics, and boundary layer fluid flow 

problems, which are expressed as a system of nonlinear ordinary differential equations, by using a multi-step 

spline-quasi polynomial collocation and provides convergence analysis and numerical and graphical results. 

 

1. MATERIAL AND METHODS: 

In this section an ordinary equation of order n is considered that is given in the form Eq. (1) where 

𝑛 = 2,3. the procedure of constructing the solution algorithm for a single equation is shown in the upcoming 

subsections.  

τ [v, v′, … , v(n)] = g, x ∈ (a, b)                            (1) 

 

Here τ acting on v and its first n derivatives as a nonlinear operator, v = v(x) is the unknown function, and 

g(x) is any given function of x. The ODE Eq. (1) is solved subject to the given boundary conditions at x = a 

and x = b, that are represented as. 

∑ αsv(z)(a)n−1
z=0 = wa,s,    s = 1,2, … , ma                (2) 

 

∑ βrv(z)(b)n−1
z=0 = wb,r,         r = 1,2, … , mb                              

(3) 

 

Where αs and βr are the constant coefficients of z-th ordinary derivative and wa,s,, wb,s, are constants v(z)(x), 

Also ma and mb indicate the number of boundary conditions prescribed at x = a and x = b respectively. The 

method incorporates the steps described below. 

2.1 The quasi-linearization method 

Firstly, the nonlinear ODE is linearized using the quasi-linearization method (QLM) of bellman and Kalaba 

[4], using (QLM) for Eq. (1), we get. 

∑ πk,l(x)vl+1
(k)n

k=0 = Rl(x)                              (4) 

Where   πk,l(x) =
∂τ

∂vl
(k)  [vl, vl

′, vl
′′, … , vl

(n)
] ,  k = 0,1,2, … n                                

Rl(x) = g(x) + ∑
∂τ

∂vl
(k)

 [vl, vl
′, vl

′′, … , vl
(n)

]

n

k=0

vl
(k)

− τ[vl, vl
′, vl

′′, … , vl
(n)

] 

Here l = 1,2,3 …, shows the iteration stage, beginning with an initial approximate solution v0, that is found 

from the boundary conditions Eq. (2,3), The QLM scheme is used to solve Eq. (4) iteratively until the 

required accuracy tolerance is obtained. 

2.2 Spectral collocation 

       The spectral quasi-linearization method is implemented on the linearized QLM scheme Eq. (4) as shown 

above, the approximate solution is assumed to be a polynomial of degree N + n. 

v(x) ≈ V(x) = ∑ ckxkn+N
k=0      (5) 

 where n is order of the ODE and the domain [a, b] is partitioned to N subintervals so that we have N + 1 

collocation points and cks are constants to be determined. 

2.3 Spline Interpolation 

       The linearized ODE in Eq. (4) is solved using the proposed model in Eq. (5), the values of 

vi, vi
′, … , vi

(n)
are obtained at each 𝑥𝑖, these accurate approximated values are used to refine the solution using 

the spline model illustrated below. 
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Si,2n+1(x) = ∑
br(x−xi)r

r!

n
r=0  + ∑

αs(x−xi)(s )

s!

2n+1
s=n+1         (6) 

 

Where x ∈ [xi, xi+1] and αs are unknowns to be determined. To find the values of αs we substitute x with 

xi so that. 

 

Si,2n+1
(r) (xi) = vi

(r)
 where r = 0,1, … , n. 

We get br =
vi

(r)

r!
 then we use Taylor series expansion around xi for v, v′, … , v(n) and substitute x with xi+1 so 

that.      

 

 Si,2n+1
(r) (xi+1) = vi+1

(r)
                       (7) 

Different polynomial spline models of various degrees are used depending on the order of the ODE in Eq. (4) 

as shown in the next subsection.           

2.3.2 Construction of Quintic Spline. 

        Here we consider an ODE in Eq.(1) where n = 2, we construct a polynomial spline of degree five where 

yi, yi
′ and yi

′′ are accurate approximations for vi, vi
′ and vi

′′, using continuity conditions for splines the 

following model can be derived. 

 

Si,5(x) = ci,2(x − xi)
5 + ci,1(x − xi)

4 + ci,0(x − xi)
3 +

yi
′′

2
(x − xi)

2 + yi
′(x − xi) + yi             (8) 

Using continuity conditions in Eq.(7), the unknowns ci,0, ci,1 and ci,2 are found by solving the system of 

equations below. 

h5ci,2 + h4ci,1 + h3ci,0 = yi+1 − yi − hyi
′ −

h2

2
yi

′′          (9) 

5h4ci,2 + 4h3ci,1 + 3h2ci,0 = yi+1
′ − yi

′ − hyi
′′    (10) 

 

20h3ci,2 + 12h2ci,1 + 6hci,0 = yi+1
′′ − yi

′′            (11) 

As a result, we obtain.   

 ci,2 =
1

2h5
[−12 12 −6     −6 −1 1 ] ∗ Y2,   ci,1 =

1

2h4
[30 −30 16 14 3 −2] ∗ Y2  

and    ci,0 =
1

2h3
[−20 20 −12 −8 −3 1] ∗ Y2, where 

Y2 = [yi yi+1 hyi
′ hyi+1

′    h2yi
′′ h2yi+1

′′ ]T     (12) 

 

 

1.3.3 Construction of Septic Spline. 

Here we consider an ODE in Eq.(1) where n = 3. We aim to construct a polynomial spline of degree seven 

where yi, yi
′, yi

′′ and yi
(3)

are accurate approximations for vi, vi
′, vi

′′ and vi
(3)

. Using continuity conditions for 

spline functions, the following model can be derived. 

Si,7(x) = bi,3(x − xi)
7 + bi,2(x − xi)

6 + bi,1(x − xi)
5 + bi,0(x − xi)

4 +
yi

(3)

6
(x − xi)

3 +
yi

′′

2
(x − xi)

2 +

yi
′(x − xi) + yi                                                  (13) 

Using continuity conditions for Eq. (13), the unknowns bi,0, bi,1, bi,2  and bi,3 are found by solving the system 

of equations below. 

h7bi,3 + h6bi,2 + h5bi,1 + h4bi,0 = yi+1 − yi − hyi
′ −

h2

2
yi

′′ −
h3

6
yi

(3)
          (14) 

  7h6bi,3 + 6h5bi,2 + 5h4bi,1 + 4h3bi,0 = yi+1
′ − yi

′ − hyi
′′ −

h2

2
yi

(3)
                                      (15) 
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 42h5bi,3 + 30h4bi,2 + 20h3bi,1 + 12h2bi,0 = yi+1
′′ − yi

′′ − hyi
(3)

                (16) 

210h4bi,3 + 120h3bi,2 + 60h2bi,1 + 24hbi,0 = yi+1
(3)

− yi
(3)

                         (17) 

We get          bi,3 =
1

6h7
[120 −120     60 60    12 −12     1 1] ∗ Y3, 

    bi,2 =
1

6h6
[−420 420     −216 −204     −45 39     −4 −3] ∗ Y3, 

 bi,1 =
1

2h5
[168 −168     90 78     20 −14     2 1] ∗ Y3, and 

  bi,0 =
1

6h4
[−210 210     −120 −90     −30 15     4 1] ∗ Y3 

Where  Y3 = [yi yi+1 hyi
′ hyi+1

′    h2yi
′′ h2yi+1

 ′′     h3yi
(3)

h3yi+1
 (3)]

T
                                        (18) 

2. CONVERGENCE ANALYSIS 

      In this part the validity and accuracy of the proposed spline models are assessed. Firstly, we prove some 

lemmas by finding the error bounds of the coefficients in Eq. (12,18) and check the convergence of the 

proposed models in equations (8,13) by proving error bound theorems, Similar to some previous efforts that 

examined the convergence of some types of spline functions [10], and [17]. 

Lemma 3.1:Let yi(x) be spline polynomial interpolation of a function y(x) on the interval [xi, xi+1 ] using  

y(x) ∈ C6[0,1], then the following inequalities hold. 

|(3 + q)! ci,q − yi
(3+q)

| ≤ h3−q (αqy(4)(ξ1) + βqy(4)(ξ2) + φqy(6)(ξ3)) ,  

where ξ1, ξ2, ξ3 ∈ (xi, xi+1 ), 

 α2 = 1, α1 = −
1

2
, α0 =

1

12
, β2 = −3, β1 =

14

10
, β0 = −

1

5
 , φ2 =

5

2
, φ1 = −1, φ0 =

1

8
  for q = 0,1,2. 

Proof. Using Taylor series expansion for y ∈ C6[0,1], about xi and the results from Eq. (12) 

We get  |5! ci,2 − yi
3| ≤

h

2
(2y(6)(ξ1) − 6y(6)(ξ2) + 5y(6)(ξ3)) , 

  |4! ci,1 − yi
′′| ≤

h2

10
(−5y(6)(ξ1) + 14y(6)(ξ2) − 10y(6)(ξ3)),  

And |3! c i,0 − yi
′′| ≤

h3

120
(10y(6)(ξ1) − 24y(6)(ξ2) + 15y(6)(ξ3))  

Theorem 3.2: Let Si(x) be spline polynomial interpolation which satisfies Eq. (7), where r = 0,1,2 and y ∈
C6[0,1], such that x ∈ (xi, xi+1 ) and h = (xi+1 − xi), then 

  |yq(x) − Si,5
(q)

(x)| ≤ Cqh6−qω(y(6), h)    

where C0 =
1

7!
, C1 =

1

6!
, C2 =

1

5!
, C3 =

23

60
, C4 =

21

10
, C5 = 4 , 

 and C6 = 1, where q = 0, 1, 2, 3, 4, 5, 6. 

Proof. Using Taylor series expansion for y ∈ C6[0,1], about xi and Lemma 3.1, then we get 

|y⬚(x) − Si,5
⬚ | =

h6

6!
|y(6)(ξ1) − y(6)(ξ4)| ≤  

h6

6!
ω(y(6); h)  
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|y′(x) − Si,5
′ (x)| =

h5

5!
|y(6)(ξ2) − y(6)(ξ4)| ≤  

h5

5!
ω(y(6); h)  

|y′′(x) − Si,5
′′ (x)| =

h5

4!
|y(6)(ξ3) − y(6)(ξ4)| ≤  

h4

4!
ω(y(6); h)  

|y(3)(x) − Si,5
(3)

(x)| =
h3

120
|10y(4)(ξ1) − 36y(4)(ξ2) + 45y(4)(ξ3) − 20y(6)(ξ4)| ≤  

23h3

60
ω(y(6); h)  

|y(4)(x) − Si,5
(4)

(x)| =
h2

10
|5y(4)(ξ1) − 16y(4)(ξ2) + 15y(4)(ξ3) − 5y(6)(ξ4)| ≤  

21h2

10
ω(y(6); h)  

|y(5)(x) − Si,5
(5)

(x)| =
h2

2
|2y(4)(ξ1) − 6y(4)(ξ2) + 5y(4)(ξ3) − 2y(6)(ξ4)| ≤  4hω(y(6); h)  

|y(6)(x) − Si,5
(6)

(x)| ≤  ω(y(6); h)  

Lemma3.3: Let yi(x), be spline polynomial interpolation of a function y(x) on the interval [xi, xi+1 ] then 

 |(4 + q)! ci,q − yi
(4+q)

| ≤ h4−q (αqy(4)(ξ1) + βqy(4)(ξ2) + φqy(6)(ξ3) + ∅ qy(6)(ξ4)),  

where ξ1, ξ2, ξ3, ξ3 ∈ (xi, xi+1 ), 

 α3 = −
5

2
, α2 =

35

28
, α1 = −

21

84
, α0 =

35

1680
, β3 = 10, β2 = −

34

7
, β1 =

39

41
, β0 = −

3

41
, φ3 = −14, φ2 =

91

14
, φ1 = −

49

42
, φ0 =

1

12
 ∅3 = 7, ∅2 = −3, ∅1 =

1

2
, ∅0 =

23

840
 , for q = 0,1,2,3. 

Proof. Using Taylor series expansion for y(x) ∈ C8[0,1], about xi and the results from Eq. (18), we have  

|7! bi,3 − yi
(7)

| ≤
h

2
(−5y(8)(ξ1) + 20y(8)(ξ2) − 28y(8)(ξ3) + 14y(8)(ξ4))  

|6! bi,2 − yi
(6)

| ≤
h2

28
(35y(8)(ξ1) − 136y(8)(ξ2) + 182(ξ3) − 84y(8)(ξ4))   

|5! bi,3 − yi
(5)

| ≤
h3

84
(−21y(8)(ξ1) + 78y(8)(ξ2) − 98y(8)(ξ3) + 42y(8)(ξ4))   

|4! bi,3 − yi
(4)

| ≤
h4

1680
(35y(8)(ξ1) − 120y(8)(ξ2) + 140y(8)(ξ3) − 56y(8)(ξ4))   

Theorem 3.4: Let Si(x) be spline interpolation which satisfies Eq.(7), where r = 0,1,2,3 and y ∈ C8[0,1], 
such that xi < x < xi+1  and h = (xi+1 − xi), then 

|yq(x) − Si,7
(q)

| ≤ Bqh8−qω(y(8), h), where B0 =
1

40320
, B1 =

1

5040
, B2 =

1

720
, B3 =

1

120
, B4 =

385

1680
, B5 =

175

84
,  B6 =

259

28
 and B7 =

35

2
, B8 = 1,  and q=0, 1, 2, 3, 4, 5, 6, 7, 8. 

 Proof. Using Taylor series expansion for y ∈ C8[0,1], about xi and Lemma 3.3, then we obtain. 

|y⬚(x) − Si,7
⬚ | =

h8

8!
|y(8)(ξ1) − y(8)(ξ5)| ≤  

h8

8!
ω(y(8); h)  

|y′(x) − Si,7
′ (x)| =

h7

7!
|y(8)(ξ2) − y(8)(ξ5)| ≤  

h7

7!
ω(y(8); h)  

|y′′(x) − Si,7
′′ (x)| =

h6

6!
|y(8)(ξ3) − y(8)(ξ5)| ≤  

h6

6!
ω(y(8); h)  

|y(3)(x) − Si,7
(3)

(x)| =
h5

5!
|y(8)(ξ4) − y(8)(ξ5)| ≤  

h5

5!
ω(y(8); h)  
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|y(4)(x) − Si,7
(4)

(x)| =
h4

1680
|−35y(8)(ξ1) + 160y(8)(ξ2) − 280y(8)(ξ3) + 224y(8)(ξ4) − 70y(8)(ξ5)| ≤

 
385h4

1680
ω(y(6); h)  

|y(5)(x) − Si,7
(5)

(x)| =
h3

84
|−21y(8)(ξ1) + 90y(8)(ξ2) − 140y(8)(ξ3) + 84y(8)(ξ4) − 14y(8)(ξ5)| ≤

 
175h4

84
ω(y(6); h)  

|y(6)(x) − Si,7
(6)

(x)| =
h2

28
|−35y(8)(ξ1) + 144y(8)(ξ2) − 210y(8)(ξ3) + 112y(8)(ξ4) − 14y(8)(ξ5)| ≤

 
259h2

28
ω(y(8); h)  

|y(7)(x) − Si,7
(7)

(x)| =
h

2
|−5y(8)(ξ1) + 20y(8)(ξ2) − 28y(8)(ξ3) + 14y(8)(ξ4) − 2y(8)(ξ5)| ≤

 
35h

2
ω(y(8); h)  

|y(8)(x) − Si,7
(8)

(x)| = ω(y(8); h)  

3. NUMERICAL EXPRIMENTATION 

         In this part, we consider some boundary layer problems that can be defined on truncated domain, the 

aim of this section is to show the accuracy and validity of our developed method. 

Example 1. A problem of a laminar two-dimensional steady boundary layer flow of an incompressible 

viscous dusty fluid over a vertical stretching sheet is considered. The governing equations are written in 

similarity form in [2] as.  

f 3 + ff ′′ − f ′2
+ Grcosγθ − Qf ′ = 0,     (19) 

θ′′ + Prfθ′ − Prmf ′θ + PrMf ′2
+ PrEcf ′′2

= 0,    (20) 

The boundary conditions are given by 

f ′(0) = 1, f(0) = 0, θ(0) = 1, θ(∞) = 0,  f ′(∞) = 0                                      (21) 

Applying QLM we get. 

fl+1
(3)

+ flfl+1
′′ + [−2fl

′ − Q]fl+1
′ + fl

′′fl+1 + Grcosγθl+1 = fl
′′fl − fl

′2
                  (22) 

θl+1
′′ + Prflθl+1 

′ + [−Prmfl
′]θl+1 + [2PrEcfl

′′]fl+1
′′ + [−Prmθl + 2PrMfl]fl+1

′ + Prθl
′fl+1 =

PrMfl
′2

+PrMfl
′′2

+ Prmθlfl
′ + Prθl

′fl                  (23) 

Subject to the boundary conditions  fl+1(0) = 0, fl+1
′ (0) = 1, θl+1(0) = 1, fl+1

′ (∞) = 0, θl+1(∞) = 0      (24)      

In this system of ODE, the accuracy of the scheme is examined by evaluating the residual error at the present 

iteration (l + 1), which can be described as. 

 ResF = |Fl+1|∞, ResѲ = |Ѳl+1|∞, where Fl+1  = fl+1
3 + fl+1fl+1

′′ − f ′
l+1
2

+ Grcosγθl+1 − Qfl+1
′ , and 

 Ѳl+1 = θl+1
′′ + Prfl+1θl+1

′ − Prmfl+1
′ θl+1 + PrM(fl+1

′ )2 + PrEcfl+1
′′ 2

                             (25)             

Additionally the scheme is said to be convergent if  |fl+1 − fl| <∈f, |θl+1 − θl|θ <∈θ, ∀l > L, for some 

chosen tolerances ∈f and ∈θ.         

Example 2. Lastly, we consider the boundary layer flow over an unsteady stretching sheet in the presence of 

the Hall effect and heat transfer over a stretching surface; the existing systems are expressed in their non-

dimensional form by EL-Aziz [3] as 
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f (3) + ff ′′ − (f)′2
− A (f ′ +

xf′′

2
) −

M

1+m2
(mh + f ′) = 0                                         (26) 

h′′ + fh′ − f ′h − A (h +
x

2
h′) +

M

1+m2
(mf ′ + h) = 0                                       (27) 

1

Pr
θ′′ + fθ′ − 2f ′θ −

A

2
(3θ + xθ′) = 0                                                      (28) 

Dependent on the boundary conditions 

f(0) = 0,   f ′(0) = 1,   h(0) = 0, θ(0) = 1,  f ′(∞) = 0,   h(∞) = 0,   θ(∞) = 0                             (29) 

In this problem, f ′(x), h(x) and θ(x) are unknown functions of  that are representing the transverse velocity, 

the dimensionless temperature, and the axial velocity, respectively; m is the Hall Effect parameter, the 

unsteadiness parameter is 𝐴, the Prandtl number is Pr, and lastly, M is the magnetic parameter. 

The QLM scheme for the governing system of the ODEs Eq. (26-29), is given by  

fl+1
(3)

+ (fl −
Ax

2
) fl+1

′′ + (−A − 2fl
′ −

M

1+m2) fl+1
′ + fl

′′fl+1 −
mM

1+m2 hl+1 = fl
′fl

′′ − fl
′2

                           (30) 

(−hl +
mM

1+m2) fl+1
′ + hl

′fl+1 + hl+1
′′ + (fl −

Ax

2
) hl+1

′ + (−2fl
′ − A −

M

1+m2) hl+1 = flhl
′ − fl

′hl         (31) 

−2θlfl+1
′ + θl

′fl+1 +
1

Pr
θl+1

′′ + (fl −
Ax

2
) θl+1

′ + (−2fl
′ −

3A

2
) θl+1 = flθl

′ − 2θlfl
′                  (32) 

 The boundary conditions are given below as 

fl+1(0) = 0, fl+1
′ (0) = 1, hl+1(0) = 0, θl+1(0) = 1, fl+1

′ (∞) = 0, hl+1(∞) = 0, θl+1(∞) = 0       (33)        

Similarly to the previous examples, the validity and precision of the iterative system in Eq. (30-33) are tested 

through residual error analysis at the present iteration l + 1 and are described as follows. 

                        ResF = |Fl+1|∞, ResH = |Hl+1|∞ and ResѲ = |Ѳl+1|∞where 

Fl+1 = fl+1
(3)

+ fl+1fl+1
′′ − (fl+1)′2

− A (fl+1
′ +

x

2
fl+1

′′ ) −
M

1+m2
(fl+1

′ + mhl+1),                     (34) 

Hl+1 = hl+1
′′ + fl+1hl+1

′ − fl+1
′ hl+1 − A (hl+1 +

x

2
hl+1

′ ) +
M

m2+1
(hl+1 + mfl+1

′ )                   (35) 

Ѳl+1 = 
1

Pr
θl+1

′′ + fl+1θl+1
′ − 2fl+1

′ θl+1 −
A

2
(3θl+1 + xθl+1

′ )                               (36) 

Additionally the scheme is said to be convergent if |fl+1 − fl| <∈f, |θl+1 − θl| <∈θ and |hl+1 − hl| <
∈h ∀l > L, for some chosen tolerances ∈f, ∈h and ∈θ .       

4. Numerical results and discussions 

        In this part, to solve the linear iterative equations Eq. (22-24) and Eq. (30-33), the solutions are 

approximated using smooth polynomial spline segments. The residual error is computed for each nonlinear 

operator at each iteration to demonstrate the convergence and efficacy of our method. In Table (1), the 

residual error for Eq. (22-24) is evaluated for three iterations. Also in Table (2), the residual errors of Eq. 

(30-33) are evaluated for 5 iterations given in Eq. (34-36); hereafter, comparing the results with [9]. 

Additionally, to examine the convergence and the stability of our proposed method numerically, the infinity 

norm is computed. Table (3) and Table (4) show that the iterative method in Eq. (22-24) and Eq. (30-33) 

converges after 6 or 7 iterations. Figure (1-4) discusses the changes in velocity profile f ′and non-dimensional 

temperature θ in Eq. (19-21) under the influence of the magnetic parameter M, the Prandtl number Pr, the 

angle of inclination γ, the Chandrasekhar number Q, and the Eckert number Ec. In Figure (1), a decrease in 

values of θ is observed when the values of M and Pr increase. Figure (2) shows that increasing the values of 

γ and Q leads to an increment in f ′.  
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However, Figure (3) suggests that raising the values of Q and γ results in an increment in the first 

section of θ domain and a decrease in the values of θ in its second section. It is also noticeable from Figure 

(4) that the values of f ′and θ vary directly with Ec. Figure (5-8) shows the variation of axial velocity f ′, 

transverse velocity h, and non-dimensional temperature θ in Eq. (26-29) under the effect of the magnetic 

parameter M, the Prandtl number Pr, the Hall effect parameter A, and the unsteadiness parameter m. From 

Figure (5), it is observable that increasing the value of Pr and the Hall effect parameter A results in a 

decrease in the dimensionless temperature θ. Also, raising the values of the Hall effect parameter A leads to a 

significant decline in the values of f ′and h, which can be seen in Figure (6). In Figure (7) it can be noticed 

that by increasing the values of the unsteadiness parameter m, the values of f ′ also increase, but raising the 

values of the magnetic parameter M results in an increment in the values of f ′ Lastly, it can be seen from 

Figure (8) that increasing the values of the unsteadiness parameter m decreases the values of h, and raising 

the values of the magnetic parameter M causes a significant increment in h values. 

Table 1. Residual error analysis of Spline approximations in Example 1 on the finite domain [0,1] using Q = 0.8, Gr =
5, γ = 60°, m = 1, M = 1, Pr = 1 and Ec = 1 

Iteration Residual error 

𝐋 |Fl+1|∞,N = 8 |Ѳl+1|∞,N = 8 

1 2.2932815e-002 5.0869839e-001 

2 2.5396168e-007 2.1834309e-006 

3  2.6413052e-017 4.1447793e-016 

 

 
Table 2. Comparison of the residual error for Eq. (30-33) in Example 2 between the present work and [9]. 

Iteration |𝐅𝐥+𝟏|∞  

𝐋 [9] Present work 

1 3.75070e-001 1.00974e+00 

2 3.58227e-002 2.45008e-002 

3 2.58387e-004 3.61489e-006 

4 

5 

1.01330e-008 

3.09963e-012 

3.48240e-014 

1.99649e-030 

Iteration |Hl+1|∞  

𝐋 [9] Present work 

1 5.67287e-002 2.19961e-002 

2 9.17907e-004 9.09012e-004 

3 2.26789e-005 2.48135e-007 

4 

5 

1.70642e-009 

1.16504e-013 

3.56051e-015 

2.82517e-031 

Iteration |Ѳl+1|∞  

𝐋 [9] Present work 

1 5.11974e-002 2.32423e-001 

2 1.56959e-002 5.25913e-003 

3 3.87065e-004 1.16030e-006 

4 6.96569e-008 1.82589e-014 

5 5.87419e-013 1.77721e-030 

 

 
Table 3. Numerical Convergence analysis of Spline approximations using 11 points (𝑁 = 10) for Eq. (19-20) in 

Example 1. 

Iteration Absolute Error 

𝐋 |fl+1 − fl|∞ |θl+1 − θl|∞ 

1 2.321519e-02 8.132948e-02 

2 5.769752e-05 4.283432e-04 

3 7.453655e-10 9.448256e-09 

4 1.650832e-19 4.917336e-19 

5 1.102026e-39 2.589761e-38 

6 5.510130e-40 3.673420e-40 

7 7.346840e-40 3.673420e-40 
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Table 4. Numerical Convergence analysis of Spline approximations using 11 points (𝑁 = 10) for Eq. (26-29) in 

Example 2. 

 
Iteration  Absolute Error 

𝐥 |fl+1 − fl|∞ |hl+1 − hl|∞ |θl+1 − θl|∞ 

1 1.359112e-02 2.255401e-02 1.072987e-01 

2 6.323724e-02 4.904691e-03 2.078343e-02 

3 6.185082e-04 8.483846e-05 3.509774e-04 

4 5.398827e-08 1.103315e-08 5.164501e-08 

5 3.832820e-16 1.072942e-16 6.102415e-16 

6 1.850823e-32 6.788643e-33 4.871858e-32 

7 5.510130e-40 7.461634e-41 3.673420e-40 

8 4.591775e-40 9.183550e-41 3.673420e-40 

 

 

 
Figure 1. The change of temperature 𝜃(𝜂) profile under the effect of magnetic parameter 𝑀 and Prandtl number Pr, when 𝑀 = 1, 1.5, 2 

and 𝑃𝑟 = 0.6, 0.8, 1. 

 

  
Figure 2. Impact of γ the angle of inclination and Chandrasekhar number Q on non-dimensional velocity f ′(η) for γ = 30°, 45°, 60°, 

and Q = 0.3, 0.6, 0.8. 
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Figure 3. Effect of γ the angle of inclination and Chandrasekhar number Q on the temperature profile θ(η), when γ = 30°, 45°, 60°, and 

Q = 0.3, 0.6, 0.8. 

 

Figure 4. Influence of Eckert number Ec on non-dimensional f ′(η) velocity and temperature θ(η) profile for Ec = 1, 2, 3. 

 

 
Figure 5. Variation of temperature profile θ(η) under the influence of Prandtl number Pr and the Hall effect parameter A for A =

0, 0.5, 1, 1.5 and Pr = 0.5, 0.72, 0.8, 1. 
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Figure 6. Graphical representation of the transverse velocity h(η) and axial velocity f ′(η) profile under the influence of the Hall effect 

parameter A, when A = 0, 0.5, 1, 1.5. 
 

   

 
Figure 7. Effect of unsteadiness parameter m and the magnetic parameter M on the axial velocity f ′(η) for m = 0.5, 1, 1.5, 2.5, and 

M = 0, 1, 3, 5. 

 

 
Figure 8. The graph of dimensionless transverse velocity h(η) under the effect of the unsteadiness parameter m and the magnetic 

parameter M, when m = 0.5, 1,1.5, 2.5 and M = 0,1,3,5. 
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5. CONCLUSIONS 

      This paper presents an effective numerical technique for solving nonlinear boundary layer flow problems 

using spectral spline collocation schemes, which are introduced together with the use of the quasi-

linearization method, and the solution curve is spatially interpolated using the functions in the Matlab 

program. We obtain the maximum errors between each pair of consecutive iterative solutions, and residual 

errors are computed. The numerical approach shown in the Table (1-4) at the uniform points with respect to 

the step size h, and comparing the scheme suggested the method to others already established in the literature 

[2] [3] [9]. It offers sufficient precision and is innovative. Additionally, two numerical cases have been 

examined utilizing the spectral spline approach, and graphs show the accuracy and practicality of the 

approach. Finally, we strongly advise applying comparable multi-step techniques to solve fluid dynamic 

issues by utilizing spectral methods and different spline functions. 
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